Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph DESeq - differential gene expression analysis

# Differential gene expression analysis This differential gene expression (DGE) analysis takes as input samples from two experimental conditions that have been processed with an RNA-Seq workflow (see list of \"Upstream workflows\" below). DESeq estimates variance-mean dependence in count data from high-throughput sequencing assays, then tests for DGE based on a model which assumes a negative binomial distribution of gene expression (aligned read count per gene). ### Experimental Setup and Results Interpretation The workflow design uses as its fold change (FC) calculation: condition 1 (c1, e.g. treatment) over condition 2 (c2, e.g. control). In other words: `FC == (c1/c2)` Therefore: - if FC<1 the log2(FC) is <0 (negative), meaning expression in condition1<condition2 (gene is downregulated in c1) - if FC>1 the log2(FC) is >0 (positive), meaning expression in condition1>condition2 (gene is upregulated in c1) In other words, if you have input TREATMENT samples as condition 1, and CONTROL samples as condition 2, a positive L2FC for a gene indicates that expression of the gene in TREATMENT is greater (or upregulated) compared to CONTROL. Next, threshold the p-adjusted values with your FDR (false discovery rate) cutoff to determine if the change may be considered significant or not. It is important to note when DESeq1 or DESeq2 is used in our DGE analysis workflow. If a user inputs only a single sample per condition DESeq1 is used for calculating DGE. In this experimental setup, there are no repeated measurements per gene per condition, therefore biological variability in each condition cannot be captured so the output p-values are assumed to be purely \"technical\". On the other hand, if >1 sample(s) are input per condition DESeq2 is used. In this case, biological variability per gene within each condition is available to be incorporated into the model, and resulting p-values are assumed to be \"biological\". Additionally, DESeq2 fold change is \"shrunk\" to account for sample variability, and as Michael Love (DESeq maintainer) puts it, \"it looks at the largest fold changes that are not due to low counts and uses these to inform a prior distribution. So the large fold changes from genes with lots of statistical information are not shrunk, while the imprecise fold changes are shrunk. This allows you to compare all estimated LFC across experiments, for example, which is not really feasible without the use of a prior\". In either case, the null hypothesis (H0) tested is that there are no significantly differentially expressed genes between conditions, therefore a smaller p-value indicates a lower probability of the H0 occurring by random chance and therefore, below a certain threshold (traditionally <0.05), H0 should be rejected. Additionally, due to the many thousands of independent hypotheses being tested (each gene representing an independent test), the p-values attained by the Wald test are adjusted using the Benjamini and Hochberg method by default. These \"padj\" values should be used for determination of significance (a reasonable value here would be <0.10, i.e. below a 10% FDR). Further Analysis: Output from the DESeq workflow may be used as input to the GSEA (Gene Set Enrichment Analysis) workflow for identifying enriched marker gene sets between conditions. ### DESeq1 High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://www.bioconductor.org/packages/3.8/bioc/html/DESeq.html), as an R/Bioconductor package. ### DESeq2 In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. ### __References__ - Anders S, Huber W (2010). “Differential expression analysis for sequence count data.” Genome Biology, 11, R106. doi: 10.1186/gb-2010-11-10-r106, http://genomebiology.com/2010/11/10/R106/. - Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 7ae3b75bbe614e59cdeaba06047234a6c40c0fe9

workflow graph id_to_json_workflow.cwl

https://github.com/sfu-ireceptor/AIRR-seqAA.git

Path: cwl/id_to_json_workflow.cwl

Branch/Commit ID: 4b98ab2f65e2d4f68bd05d5719eadbbad14e94e1

workflow graph dfast-filelist-outputdir.cwl

https://github.com/nigyta/bact_genome.git

Path: cwl/workflow/dfast-filelist-outputdir.cwl

Branch/Commit ID: e316f37f502005165ebd7f22b5257900c7c712ac

workflow graph cond-wf-004_nojs.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/conditionals/cond-wf-004_nojs.cwl

Branch/Commit ID: 707ebcd2173889604459c5f4ffb55173c508abb3

workflow graph optional_src_mandatory_sink.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/optional_src_mandatory_sink.cwl

Branch/Commit ID: 18b8fdf7d425d8e7d8986e08904ef09492798cf6

workflow graph helloworld-slurmcern.cwl

https://github.com/reanahub/reana-demo-helloworld.git

Path: workflow/cwl/helloworld-slurmcern.cwl

Branch/Commit ID: 75f3e615171308b85495e593a35fbb64e27bf5d3

workflow graph Unaligned BAM to BQSR and VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_bqsr_no_dup_marking.cwl

Branch/Commit ID: 24e5290aec441665c6976ee3ee8ae3574c49c6b5

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: b957a4f681bf0ca8ebba4e0d0ec3936bf79620c5

workflow graph bacterial_kmer

https://github.com/ncbi/pgap.git

Path: bacterial_kmer/wf_bacterial_kmer.cwl

Branch/Commit ID: 9144d08fa7f4e852498761481dceab477167fa65

workflow graph Downsample and HaplotypeCaller

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/downsample_and_recall.cwl

Branch/Commit ID: 174f3b239018328cec1d821947438b457552724c