Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Unaligned to aligned BAM

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/align.cwl

Branch/Commit ID: da335d9963418f7bedd84cb2791a0df1b3165ffe

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: b5e16e359007150647b14dc6e038f4eb8dccda79

workflow graph io-union-input-default-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/io-union-input-default-wf.cwl

Branch/Commit ID: 31ec48a8d81ef7c1b2c5e9c0a19e7623efe4a1e2

workflow graph mutect parallel workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/mutect.cwl

Branch/Commit ID: a3e26136043c03192c38c335316d2d36e3e67478

workflow graph Generate genome indices for STAR & bowtie

Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files

https://github.com/datirium/workflows.git

Path: workflows/genome-indices.cwl

Branch/Commit ID: ebbf23764ede324cabc064bd50647c1f643726fa

workflow graph Unaligned BAM to BQSR and VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_bqsr_no_dup_marking.cwl

Branch/Commit ID: da335d9963418f7bedd84cb2791a0df1b3165ffe

workflow graph exome alignment and germline variant detection, with optitype for HLA typing

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/germline_exome_hla_typing.cwl

Branch/Commit ID: d2c2f2eb846ae2e9cdcab46e3bb88e42126cb3f5

workflow graph Filter single sample sv vcf from depth callers(cnvkit/cnvnator)

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/sv_depth_caller_filter.cwl

Branch/Commit ID: 7b4b489474473c3d2d992a838b89632c2b97dc2c

workflow graph Merge, annotate, and generate a TSV for SVs

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/merge_svs.cwl

Branch/Commit ID: 7b4b489474473c3d2d992a838b89632c2b97dc2c

workflow graph Subworkflow that runs cnvkit in single sample mode and returns a vcf file

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cnvkit_single_sample.cwl

Branch/Commit ID: 7b4b489474473c3d2d992a838b89632c2b97dc2c