Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph gathered exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_gathered.cwl

Branch/Commit ID: 8dc462a7d9ba1479f764682af99c69d8574cb3dc

workflow graph heatmap.cwl

Generates ATDP heatmap centered on TSS from an array of input BAM files and genelist TSV file. Returns array of heatmap JSON files with the names that have the same basenames as input BAM files, but with .json extension

https://github.com/Barski-lab/workflows.git

Path: workflows/heatmap.cwl

Branch/Commit ID: dcf683418d101917852b1711a91af817d4ea5d03

workflow graph tt_kmer_top_n.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n.cwl

Branch/Commit ID: 0bc1c33a2293e054ad00974971edc79c13252cc7

workflow graph exome alignment and tumor-only variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/exome.cwl

Branch/Commit ID: 6f9f8a2057c6a9f221a44559f671e87a75c70075

workflow graph Workflow to run pVACseq from detect_variants and rnaseq pipeline outputs

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/pvacseq.cwl

Branch/Commit ID: 051074fce4afd9732ef34db9dd43d3a1d8e979d6

workflow graph Apply filters to VCF file

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/filter_vcf.cwl

Branch/Commit ID: 258bd4353ad1ca7790b3ae626bf42ab8194e7561

workflow graph inp_update_wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/inp_update_wf.cwl

Branch/Commit ID: 664835e83eb5e57eee18a04ce7b05fb9d70d77b7

workflow graph sum-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/sum-wf.cwl

Branch/Commit ID: e62f99dd79d6cb9c157cceb458f74200da84f6e9

workflow graph Hello World

Outputs a message using echo

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/hello-workflow.cwl

Branch/Commit ID: dbc4c4c2ad30ed31367b4fbcc3bb4084fdcabaa2

workflow graph CUT&RUN/TAG MACS2 pipeline paired-end

A basic analysis workflow for paired-read CUT&RUN and CUT&TAG sequencing experiments. These sequencing library prep methods are ultra-sensitive chromatin mapping technologies compared to the ChIP-Seq methodology. Its primary benefits include 1) length filtering, 2) a higher signal-to-noise ratio, and 3) built-in normalization for between sample comparisons. This workflow utilizes the tool MACS2 which calls enriched regions in the target sequence data by identifying the top regions by area under a poisson distribution (of the alignment pileup). This workflow is loosely based on the [CUT-RUNTools-2.0 pipeline](https://github.com/fl-yu/CUT-RUNTools-2.0) pipeline, and the ChIP-Seq pipeline from [BioWardrobe](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) was used as a CWL template. ### __Inputs__ *General Info (required\*):* - Experiment short name/Alias* - a unique name for the sample (e.g. what was used on tubes while processing it) - Cells* - sample cell type or organism name - Conditions* - experimental condition name - Catalog # - catalog number for cells from vender/supplier - Primary [genome index](https://scidap.com/tutorials/basic/genome-indices) for peak calling* - preprocessed genome index of sample organism for primary alignment and peak calling - Secondary [genome index](https://scidap.com/tutorials/basic/genome-indices) for spike-in normalization* - preprocessed genome index of spike-in organism for secondary alignment (of unaligned reads from primary alignment) and spike-in normalization, default should be E. coli K-12 - FASTQ file for R1* - read 1 file of a pair-end library - FASTQ file for R2* - read 2 file of a pair-end library *Advanced:* - - Number of bases to clip from the 3p end - used by bowtie aligner to trim <int> bases from 3' (right) end of reads - Number of bases to clip from the 5p end - used by bowtie aligner to trim <int> bases from 5' (left) end of reads - Call samtools rmdup to remove duplicates from sorted BAM file? - toggle on/off to remove duplicate reads from analysis - Fragment Length Filter will retain fragments between set base pair (bp) ranges for peak analysis - drop down menu - `default_below_1000` retains fragments <1000 bp - `histones_130_to_300` retains fragments between 130-300 bp - `TF_below_130` retains fragments <130 bp - Max distance (bp) from gene TSS (in both directions) overlapping which the peak will be assigned to the promoter region - default set to `1000` - Max distance (bp) from the promoter (only in upstream directions) overlapping which the peak will be assigned to the upstream region - default set to `20000` - Number of threads for steps that support multithreading - default set to `2` ### __Outputs__ Intermediate and final downloadable outputs include: - IGV with gene, BigWig (raw and normalized), and stringent peak tracks - quality statistics and visualizations for both R1/R2 input FASTQ files - coordinate sorted BAM file with associated BAI file for primary alignment - read pileup/coverage in BigWig format (raw and normalized) - cleaned bed files (containing fragment coordinates), and spike-in normalized peak-called BED files (also includes \"narrow\" and \"broad\" peaks). - stringent peak call bed file with nearest gene annotations per peak ### __Data Analysis Steps__ 1. Trimming the adapters with TrimGalore. - This step is particularly important when the reads are long and the fragments are short - resulting in sequencing adapters at the ends of reads. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nextera/Tn5 adapters. 2. Generate quality control statistics of trimmed, unmapped sequence data 3. (Optional) Clipping of 5' and/or 3' end by the specified number of bases. 4. Mapping reads to primary genome index with Bowtie. - Only uniquely mapped reads with less than 3 mismatches are used in the downstream analysis. Results are then sorted and indexed. Final outputs are in bam/bai format, which are also used to extrapolate effects of additional sequencing based on library complexity. 5. (Optional) Removal of duplicates (reads/pairs of reads mapping to exactly the same location). - This step is used to remove reads overamplified during amplification of the library. Unfortunately, it may also remove \"good\" reads. We usually do not remove duplicates unless the library is heavily duplicated. 6. Mapping unaligned reads from primary alignment to secondary genome index with Bowtie. - This step is used to obtain the number of reads for normalization, used to scale the pileups from the primary alignment. After normalization, sample pileups/peak may then be appropriately compared to one another assuming an equal use of spike-in material during library preparation. Note the default genome index for this step should be *E. coli* K-12 if no spike-in material was called out in the library protocol. Refer to [Step 16](https://www.protocols.io/view/cut-amp-tag-data-processing-and-analysis-tutorial-e6nvw93x7gmk/v1?step=16#step-4A3D8C70DC3011EABA5FF3676F0827C5) of the \"CUT&Tag Data Processing and Analysis Tutorial\" by Zheng Y et al (2020). Protocol.io. 7. Formatting alignment file to account for fragments based on paired-end BAM. - Generates a filtered and normalized bed file to be used as input for peak calling. 8. Call enriched regions using MACS2. - This step called peaks (broad and narrow) using the MACS2 tool with default parameters and no normalization to a control sample. 9. Generation and formatting of output files. - This step collects read, alignment, and peak statistics, as well asgenerates BigWig coverage/pileup files for display on the browser using IGV. The coverage shows the number of fragments that cover each base in the genome both normalized and unnormalized to the calculated spike-in scaling factor. ### __References__ - Meers MP, Tenenbaum D, Henikoff S. (2019). Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics and Chromatin 12(1):42. - Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

https://github.com/datirium/workflows.git

Path: workflows/cutandrun-macs2-pe.cwl

Branch/Commit ID: 261c0232a7a40880f2480b811ed2d7e89c463869