Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_mouse.cwl

Branch/Commit ID: 8dc462a7d9ba1479f764682af99c69d8574cb3dc

workflow graph step-valuefrom-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/step-valuefrom-wf.cwl

Branch/Commit ID: ea9f8634e41824ac3f81c3dde698d5f0eef54f1b

workflow graph map-ordering-v1_2.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/map-ordering-v1_2.cwl

Branch/Commit ID: 0ab1d42d10f7311bb4032956c4a6f3d2730d9507

workflow graph exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome.cwl

Branch/Commit ID: 0c4855bf23622828413ecb09dd30754691c28014

workflow graph Trim Galore ChIP-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: a68821bf3a9ceadc3b2ffbb535d601d9a645b377

workflow graph Unaligned BAM to BQSR and VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_bqsr_no_dup_marking.cwl

Branch/Commit ID: c711498c04d6b8ddf92ddceb6219f074765f7993

workflow graph conflict-wf.cwl#collision

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/conflict-wf.cwl

Branch/Commit ID: b82ce7ae901a54c7a062fd5eefd8d5ceb5a4d684

Packed ID: collision

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: a68821bf3a9ceadc3b2ffbb535d601d9a645b377

workflow graph exome alignment with qc, no bqsr, no verify_bam_id

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/alignment_exome_mouse.cwl

Branch/Commit ID: 3f3b186da9bf82a5e2ae74ba27aef35a46174ebe

workflow graph workflow-fetch-hmmscan.cwl

https://github.com/ebi-wp/webservice-cwl.git

Path: workflows/workflow-fetch-hmmscan.cwl

Branch/Commit ID: 7c2c01c23d7a68a4f0c608881280576d65a01325