Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph tt_fscr_calls_pass1

https://github.com/ncbi/pgap.git

Path: task_types/tt_fscr_calls_pass1.cwl

Branch/Commit ID: 42df0c0f9a4e5697abadd9cb52440691fafc8f5d

workflow graph count-lines13-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines13-wf.cwl

Branch/Commit ID: 7c7615c44b80f8e76e659433f8c7875603ae0b25

workflow graph exome alignment with qc, no bqsr, no verify_bam_id

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/exome_alignment_mouse.cwl

Branch/Commit ID: f9600f9959acdc30259ba7e64de61104c9b01f0b

workflow graph gathered exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/gathered_somatic_exome.cwl

Branch/Commit ID: a9133c999502acf94b433af8d39897e6c2cdf65f

workflow graph heatmap.cwl

Generates ATDP heatmap centered on TSS from an array of input BAM files and genelist TSV file. Returns array of heatmap JSON files with the names that have the same basenames as input BAM files, but with .json extension

https://github.com/Barski-lab/workflows.git

Path: workflows/heatmap.cwl

Branch/Commit ID: 64e85970dbecba89c3380ab285c108d221e76fe6

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: 5b1d3af2b36d64c15095e62ed0ba7543369f216c

workflow graph count-lines10-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines10-wf.cwl

Branch/Commit ID: 4635090ef98247b1902b3c7a25c007d9db1cb883

workflow graph scatter-valuefrom-wf4.cwl#main

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-valuefrom-wf4.cwl

Branch/Commit ID: 1f3ef888d9ef2306c828065c460c1800604f0de4

Packed ID: main

workflow graph trim-rnaseq-pe-dutp.cwl

Runs RNA-Seq BioWardrobe basic analysis with strand specific pair-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/trim-rnaseq-pe-dutp.cwl

Branch/Commit ID: ea2a2ab57710fcf067f67305f3dd6ad29094da1a

workflow graph MAnorm PE - quantitative comparison of ChIP-Seq paired-end data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-pe.cwl

Branch/Commit ID: a68821bf3a9ceadc3b2ffbb535d601d9a645b377