Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Apply filters to VCF file

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/filter_vcf.cwl

Branch/Commit ID: e0b3c76e38630fb6234414b5adebfb6a4fb23117

workflow graph map-ordering-v1_1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/map-ordering-v1_1.cwl

Branch/Commit ID: 0ab1d42d10f7311bb4032956c4a6f3d2730d9507

workflow graph schemadef-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/schemadef-wf.cwl

Branch/Commit ID: e9c83739a93fa0b18f8dea2f98b632a9e32725c9

workflow graph bam to trimmed fastqs and biscuit alignments

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_trimmed_fastq_and_biscuit_alignments.cwl

Branch/Commit ID: 9c0b1497c467393e1a54735575043dced73e95c4

workflow graph count-lines12-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines12-wf.cwl

Branch/Commit ID: e9c83739a93fa0b18f8dea2f98b632a9e32725c9

workflow graph Add snv and indel bam-readcount files to a vcf

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/vcf_readcount_annotator.cwl

Branch/Commit ID: e59c77629936fad069007ba642cad49fef7ad29f

workflow graph exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_mouse.cwl

Branch/Commit ID: f9600f9959acdc30259ba7e64de61104c9b01f0b

workflow graph Workflow to run pVACseq from detect_variants and rnaseq pipeline outputs

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/pvacseq.cwl

Branch/Commit ID: a670f323e77e02d9b77be9a13d73d5276dd3676c

workflow graph MAnorm PE - quantitative comparison of ChIP-Seq paired-end data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-pe.cwl

Branch/Commit ID: e99e80a2c19682d59947bde04a892d7b6d90091c

workflow graph dynresreq-workflow-inputdefault.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/dynresreq-workflow-inputdefault.cwl

Branch/Commit ID: 1f3ef888d9ef2306c828065c460c1800604f0de4