Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph trim-rnaseq-se-dutp.cwl

Runs RNA-Seq dUTP BioWardrobe basic analysis with strand specific single-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: b4b7b2e7e508be5eac639f9e323d141daf714c0d

workflow graph tt_fscr_calls_pass1

https://github.com/ncbi/pgap.git

Path: task_types/tt_fscr_calls_pass1.cwl

Branch/Commit ID: d87a0786b52809b36201adb7d3d3ab2b8bbbef20

workflow graph extract_gencoll_ids

https://github.com/ncbi/pgap.git

Path: task_types/tt_extract_gencoll_ids.cwl

Branch/Commit ID: 708e141d99f6e5f30d9402d9f890562606a0d97e

workflow graph Per-chromosome pindel

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/pindel_cat.cwl

Branch/Commit ID: e0b3c76e38630fb6234414b5adebfb6a4fb23117

workflow graph wf-loadContents3.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/wf-loadContents3.cwl

Branch/Commit ID: e62f99dd79d6cb9c157cceb458f74200da84f6e9

workflow graph any-type-compat.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/any-type-compat.cwl

Branch/Commit ID: e9c83739a93fa0b18f8dea2f98b632a9e32725c9

workflow graph scatter-wf1.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-wf1.cwl

Branch/Commit ID: 1f3ef888d9ef2306c828065c460c1800604f0de4

workflow graph DESeq - differential gene expression analysis

# Differential gene expression analysis This differential gene expression (DGE) analysis takes as input samples from two experimental conditions that have been processed with an RNA-Seq workflow (see list of \"Upstream workflows\" below). DESeq estimates variance-mean dependence in count data from high-throughput sequencing assays, then tests for DGE based on a model which assumes a negative binomial distribution of gene expression (aligned read count per gene). ### Experimental Setup and Results Interpretation The workflow design uses as its fold change (FC) calculation: condition 1 (c1, e.g. treatment) over condition 2 (c2, e.g. control). In other words: `FC == (c1/c2)` Therefore: - if FC<1 the log2(FC) is <0 (negative), meaning expression in condition1<condition2 (gene is downregulated in c1) - if FC>1 the log2(FC) is >0 (positive), meaning expression in condition1>condition2 (gene is upregulated in c1) In other words, if you have input TREATMENT samples as condition 1, and CONTROL samples as condition 2, a positive L2FC for a gene indicates that expression of the gene in TREATMENT is greater (or upregulated) compared to CONTROL. Next, threshold the p-adjusted values with your FDR (false discovery rate) cutoff to determine if the change may be considered significant or not. It is important to note when DESeq1 or DESeq2 is used in our DGE analysis workflow. If a user inputs only a single sample per condition DESeq1 is used for calculating DGE. In this experimental setup, there are no repeated measurements per gene per condition, therefore biological variability in each condition cannot be captured so the output p-values are assumed to be purely \"technical\". On the other hand, if >1 sample(s) are input per condition DESeq2 is used. In this case, biological variability per gene within each condition is available to be incorporated into the model, and resulting p-values are assumed to be \"biological\". Additionally, DESeq2 fold change is \"shrunk\" to account for sample variability, and as Michael Love (DESeq maintainer) puts it, \"it looks at the largest fold changes that are not due to low counts and uses these to inform a prior distribution. So the large fold changes from genes with lots of statistical information are not shrunk, while the imprecise fold changes are shrunk. This allows you to compare all estimated LFC across experiments, for example, which is not really feasible without the use of a prior\". In either case, the null hypothesis (H0) tested is that there are no significantly differentially expressed genes between conditions, therefore a smaller p-value indicates a lower probability of the H0 occurring by random chance and therefore, below a certain threshold (traditionally <0.05), H0 should be rejected. Additionally, due to the many thousands of independent hypotheses being tested (each gene representing an independent test), the p-values attained by the Wald test are adjusted using the Benjamini and Hochberg method by default. These \"padj\" values should be used for determination of significance (a reasonable value here would be <0.10, i.e. below a 10% FDR). Further Analysis: Output from the DESeq workflow may be used as input to the GSEA (Gene Set Enrichment Analysis) workflow for identifying enriched marker gene sets between conditions. ### DESeq1 High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://www.bioconductor.org/packages/3.8/bioc/html/DESeq.html), as an R/Bioconductor package. ### DESeq2 In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. ### __References__ - Anders S, Huber W (2010). “Differential expression analysis for sequence count data.” Genome Biology, 11, R106. doi: 10.1186/gb-2010-11-10-r106, http://genomebiology.com/2010/11/10/R106/. - Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 7030da528559c7106d156284e50ff0ecedab0c4e

workflow graph Bismark Methylation - pipeline for BS-Seq data analysis

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: 7ced5a5259dbd8b3fc64456beaeffd44f4a24081

workflow graph record-output-wf_v1_0.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/record-output-wf_v1_0.cwl

Branch/Commit ID: e78db9870cb744fe36674f43b3223c688e9989e1