Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph genome-kallisto-index.cwl

Generates a FASTA file with the DNA sequences for all transcripts in a GFF file and builds kallisto index

https://github.com/Barski-lab/workflows.git

Path: tools/genome-kallisto-index.cwl

Branch/Commit ID: bc75349ad3a7bdce82b4cd8584501f4d0280bb8d

workflow graph WGS and MT analysis for fastq files

rna / protein - qc, preprocess, filter, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/wgs-noscreen-fastq.workflow.cwl

Branch/Commit ID: 49e29dfc5b1f7a7630831a1052f9136caa29dbf7

workflow graph advanced-header.cwl

https://github.com/datirium/workflows.git

Path: metadata/advanced-header.cwl

Branch/Commit ID: 99840925c38f8a3d9cdf9d2c7f2f032e083bfd01

workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: e9cc6de8cd1e00345969c646e5e6f27d7d10420f

workflow graph Immunotherapy Workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/immuno.cwl

Branch/Commit ID: 8438316338e66823e1c9aca9f675b2bf33f2aa59

workflow graph count-lines15-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines15-wf.cwl

Branch/Commit ID: c7c97715b400ff2194aa29fc211d3401cea3a9bf

workflow graph echo-wf-default.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/echo-wf-default.cwl

Branch/Commit ID: c7c97715b400ff2194aa29fc211d3401cea3a9bf

workflow graph GSEApy - Gene Set Enrichment Analysis in Python

GSEAPY: Gene Set Enrichment Analysis in Python ============================================== Gene Set Enrichment Analysis is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). GSEA requires as input an expression dataset, which contains expression profiles for multiple samples. While the software supports multiple input file formats for these datasets, the tab-delimited GCT format is the most common. The first column of the GCT file contains feature identifiers (gene ids or symbols in the case of data derived from RNA-Seq experiments). The second column contains a description of the feature; this column is ignored by GSEA and may be filled with “NA”s. Subsequent columns contain the expression values for each feature, with one sample's expression value per column. It is important to note that there are no hard and fast rules regarding how a GCT file's expression values are derived. The important point is that they are comparable to one another across features within a sample and comparable to one another across samples. Tools such as DESeq2 can be made to produce properly normalized data (normalized counts) which are compatible with GSEA. Documents ============================================== - GSEA Home Page: https://www.gsea-msigdb.org/gsea/index.jsp - Results Interpretation: https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Interpreting_GSEA_Results - GSEA User Guide: https://gseapy.readthedocs.io/en/latest/faq.html - GSEAPY Docs: https://gseapy.readthedocs.io/en/latest/introduction.html References ============================================== - Subramanian, Tamayo, et al. (2005, PNAS), https://www.pnas.org/content/102/43/15545 - Mootha, Lindgren, et al. (2003, Nature Genetics), http://www.nature.com/ng/journal/v34/n3/abs/ng1180.html - Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 128(14). - Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016; gkw377 . - Xie Z, Bailey A, Kuleshov MV, Clarke DJB., Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, & Ma’ayan A. Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. 2021. doi: 10.1002/cpz1.90

https://github.com/datirium/workflows.git

Path: workflows/gseapy.cwl

Branch/Commit ID: 46d3d403ddb240d5a8f4f31ab992b6d6a2686745

workflow graph blastp_wnode_naming

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_naming.cwl

Branch/Commit ID: 3bec7182e39cb4af10ed8920639adfa78a28ed81

workflow graph Cut-n-Run pipeline paired-end

Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe-cut-n-run.cwl

Branch/Commit ID: 4a80f5b8f86c83af39494ecc309b789aeda77964