Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore ChIP-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: 4f48ee6f8665a34cdf96e89c012ee807f80c7a3d

workflow graph HS Metrics workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/hs_metrics.cwl

Branch/Commit ID: 3ee63d8757c341ca98b3b46ec4782862ad19b710

workflow graph count-lines9-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines9-wf.cwl

Branch/Commit ID: c7c97715b400ff2194aa29fc211d3401cea3a9bf

workflow graph kfdrc_alignment_wf.cwl

https://github.com/kids-first/kf-alignment-workflow.git

Path: workflows/kfdrc_alignment_wf.cwl

Branch/Commit ID: 9fc3770230e1bd8495f5e6a18665bd21e7c6fafd

workflow graph xenbase-fastq-bowtie-bigwig-se-pe.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/xenbase-fastq-bowtie-bigwig-se-pe.cwl

Branch/Commit ID: 9ee330737f4603e4e959ffe786fbb2046db70a00

workflow graph timelimit3-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/timelimit3-wf.cwl

Branch/Commit ID: 1f3ef888d9ef2306c828065c460c1800604f0de4

workflow graph tt_univec_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_univec_wnode.cwl

Branch/Commit ID: 2afb5ebafd1353ba063cc74ee9a7eaf347afce5c

workflow graph rnaseq-pe.cwl

Runs RNA-Seq BioWardrobe basic analysis with pair-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: ea2a2ab57710fcf067f67305f3dd6ad29094da1a

workflow graph step-valuefrom3-wf_v1_0.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/step-valuefrom3-wf_v1_0.cwl

Branch/Commit ID: e78db9870cb744fe36674f43b3223c688e9989e1

workflow graph EMG pipeline v3.0 (paired end version)

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/emg-pipeline-v3-paired.cwl

Branch/Commit ID: 9a72f76a5c8c874278205fcdeb93362a0d8a5152