Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow must be used with paired-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 2 (after running STAR) 5. Generate BigWig file using sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 46d3d403ddb240d5a8f4f31ab992b6d6a2686745

workflow graph Detect Variants workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/detect_variants_mouse.cwl

Branch/Commit ID: 8438316338e66823e1c9aca9f675b2bf33f2aa59

workflow graph bam_readcount workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_readcount.cwl

Branch/Commit ID: a7838a5ca72b25db5c2af20a15f34303a839980e

workflow graph workflow_input_sf_expr.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_sf_expr.cwl

Branch/Commit ID: 124a08ce3389eb49066c34a4163cbbed210a0355

workflow graph DESeq2 (LRT) - differential gene expression analysis using likelihood ratio test

Runs DESeq2 using LRT (Likelihood Ratio Test) ============================================= The LRT examines two models for the counts, a full model with a certain number of terms and a reduced model, in which some of the terms of the full model are removed. The test determines if the increased likelihood of the data using the extra terms in the full model is more than expected if those extra terms are truly zero. The LRT is therefore useful for testing multiple terms at once, for example testing 3 or more levels of a factor at once, or all interactions between two variables. The LRT for count data is conceptually similar to an analysis of variance (ANOVA) calculation in linear regression, except that in the case of the Negative Binomial GLM, we use an analysis of deviance (ANODEV), where the deviance captures the difference in likelihood between a full and a reduced model. When one performs a likelihood ratio test, the p values and the test statistic (the stat column) are values for the test that removes all of the variables which are present in the full design and not in the reduced design. This tests the null hypothesis that all the coefficients from these variables and levels of these factors are equal to zero. The likelihood ratio test p values therefore represent a test of all the variables and all the levels of factors which are among these variables. However, the results table only has space for one column of log fold change, so a single variable and a single comparison is shown (among the potentially multiple log fold changes which were tested in the likelihood ratio test). This indicates that the p value is for the likelihood ratio test of all the variables and all the levels, while the log fold change is a single comparison from among those variables and levels. **Technical notes** 1. At least two biological replicates are required for every compared category 2. Metadata file describes relations between compared experiments, for example ``` ,time,condition DH1,day5,WT DH2,day5,KO DH3,day7,WT DH4,day7,KO DH5,day7,KO ``` where `time, condition, day5, day7, WT, KO` should be a single words (without spaces) and `DH1, DH2, DH3, DH4, DH5` correspond to the experiment aliases set in **RNA-Seq experiments** input. 3. Design and reduced formulas should start with **~** and include categories or, optionally, their interactions from the metadata file header. See details in DESeq2 manual [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#interactions) and [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#likelihood-ratio-test) 4. Contrast should be set based on your metadata file header and available categories in a form of `Factor Numerator Denominator`, where `Factor` - column name from metadata file, `Numerator` - category from metadata file to be used as numerator in fold change calculation, `Denominator` - category from metadata file to be used as denominator in fold change calculation. For example `condition WT KO`.

https://github.com/datirium/workflows.git

Path: workflows/deseq-lrt.cwl

Branch/Commit ID: 7eef0294395d83ff0765fce61726a59d71126422

workflow graph default-wf5.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/default-wf5.cwl

Branch/Commit ID: f94719e862f86cc88600caf3628faba6c0d05042

workflow graph Replace legacy AML Trio Assay

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/aml_trio_cle.cwl

Branch/Commit ID: 5be54bf09092c53e6c7797a875f64a360d511d7f

workflow graph Cellranger reanalyze - reruns secondary analysis performed on the feature-barcode matrix

Devel version of Single-Cell Cell Ranger Reanalyze ================================================== Workflow calls \"cellranger aggr\" command to rerun secondary analysis performed on the feature-barcode matrix (dimensionality reduction, clustering and visualization) using different parameter settings. As an input we use filtered feature-barcode matrices in HDF5 format from cellranger count or aggr experiments. Note, we don't pass aggregation_metadata from the upstream cellranger aggr step. Need to address this issue when needed.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-reanalyze.cwl

Branch/Commit ID: e99e80a2c19682d59947bde04a892d7b6d90091c

workflow graph Varscan Workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/varscan_germline.cwl

Branch/Commit ID: 0a9a4ce83b49ed4e7eee5bcc09d83725136a36b0

workflow graph kfdrc_bwamem_subwf.cwl

https://github.com/kids-first/kf-alignment-workflow.git

Path: workflows/dev/ultra-opt/kfdrc_bwamem_subwf.cwl

Branch/Commit ID: 9fc3770230e1bd8495f5e6a18665bd21e7c6fafd