Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph step-valuefrom3-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom3-wf.cwl

Branch/Commit ID: 1e3f5404b7d5af02e3dec0faea31352111ad7cd8

workflow graph scatter-valuefrom-wf3.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf3.cwl

Branch/Commit ID: 596aab620489cd2611f4bc1d9a4fc914ddf34514

Packed ID: main

workflow graph rnaseq-pe.cwl

RNA-Seq basic analysis workflow for paired-end experiment.

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: 9a2c389364674221fab3f0f6afdda799e6aa3247

workflow graph MAnorm PE - quantitative comparison of ChIP-Seq paired-end data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-pe.cwl

Branch/Commit ID: a839eb6390974089e1a558c49fc07b4c66c50767

workflow graph wf_get_peaks_se.cwl

https://github.com/yeolab/eclip.git

Path: cwl/wf_get_peaks_se.cwl

Branch/Commit ID: 49a9bcda10de8f55fab2481f424eb9cdf2e5b256

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: ee66d03be8a7fd61367db40c37a973ff55ece4da

workflow graph count-lines1-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/count-lines1-wf.cwl

Branch/Commit ID: f207d168f4e7eb4dd2279840d4062ba75d9c79c3

workflow graph Bisulfite alignment and QC

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/bisulfite.cwl

Branch/Commit ID: 1560e7817fdb71d58aca7f98aba68809d840ade1

workflow graph cluster_blastp_wnode and gpx_qdump combined

https://github.com/ncbi/pgap.git

Path: task_types/tt_cluster_and_qdump.cwl

Branch/Commit ID: 909f26beaf96c2cdfe208f87ecd1e9c3de20b81c

workflow graph Detect Variants workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/detect_variants_nonhuman.cwl

Branch/Commit ID: 889a077a20c0fdb01f4ed97aa4bc40f920c37a1a