Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph scatter-valuefrom-wf4.cwl#main

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-valuefrom-wf4.cwl

Branch/Commit ID: e62f99dd79d6cb9c157cceb458f74200da84f6e9

Packed ID: main

workflow graph linc_calibrator.cwl

https://git.astron.nl/RD/LINC.git

Path: workflows/linc_calibrator.cwl

Branch/Commit ID: 0c5bd78e3f2d08564f5c9a563bcc8bb7704e6202

workflow graph miRNA-Seq miRDeep2 pipeline

A CWL workflow for discovering known or novel miRNAs from deep sequencing data using the miRDeep2 tool. The ExoCarta exosome database is also used for identifying exosome-related miRNAs, and TargetScan's organism-specific databases are used for identifying miRNA gene targets. ## __Outputs__ #### Primary Output files: - mirs_known.tsv, detected known mature miRNAs, \"Known miRNAs\" tab - mirs_novel.tsv, detected novel mature miRNAs, \"Novel miRNAs\" tab #### Secondary Output files: - mirs_known_exocarta_deepmirs.tsv, list of detected miRNA also in ExoCarta's exosome database, \"Detected Exosome miRNAs\" tab - mirs_known_gene_targets.tsv, pre-computed gene targets of known mature mirs, downloadable - known_mirs_mature.fa, known mature mir sequences, downloadable - known_mirs_precursor.fa, known precursor mir sequences, downloadable - novel_mirs_mature.fa, novel mature mir sequences, downloadable - novel_mirs_precursor.fa, novel precursor mir sequences, downloadable #### Reports: - overview.md (input list, alignment & mir metrics), \"Overview\" tab - mirdeep2_result.html, summary of mirdeep2 results, \"miRDeep2 Results\" tab ## __Inputs__ #### General Info - Sample short name/Alias: unique name for sample - Experimental condition: condition, variable, etc name (e.g. \"control\" or \"20C 60min\") - Cells: name of cells used for the sample - Catalog No.: vender catalog number if available - Bowtie2 index: Bowtie2 index directory of the reference genome. - Reference Genome FASTA: Reference genome FASTA file to be used for alignment. - Genome short name: Name used for setting organism name, genus, species, and tax ID. - Input FASTQ file: FASTQ file from a single-end miRNA sequencing run. #### Advanced - Adapter: Adapter sequence to be trimmed from miRNA sequence reads. (Default: TCGTAT) - Threads: Number of threads to use for steps that support multithreading (Default: 4). ## Hints & Tips: #### For the identification of novel miRNA candidates, the following may be used as a filtering guideline: 1. miRDeep score > 4 (some authors use 1) 2. not present a match with rfam 3. should present a significant RNAfold (\"yes\") 4. a number of mature reads > 10 5. if applicable, novel mir must be expressed in multiple samples #### For filtering mirbase by organism. | genome | organism | division | name | tree | NCBI-taxid | | ---- | --- | --- | ----------- | ----------- | ----------- | | hg19 | hsa | HSA | Homo sapiens | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Primates;Hominidae | 9606 | | hg38 | hsa | HSA | Homo sapiens | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Primates;Hominidae | 9606 | | mm10 | mmu | MMU | Mus musculus | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Rodentia | 10090 | | rn7 | rno | RNO | Rattus norvegicus | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Rodentia | 10116 | | dm3 | dme | DME | Drosophila melanogaster | Metazoa;Bilateria;Ecdysozoa;Arthropoda;Hexapoda | 7227 | ## __Data Analysis Steps__ 1. The miRDeep2 Mapper module processes Illumina FASTQ output and maps it to the reference genome. 2. The miRDeep2 miRDeep2 module identifies known and novel (mature and precursor) miRNAs. 3. The ExoCarta database of miRNA found in exosomes is then used to find overlap between mirs_known.tsv and exosome associated miRNAs. 4. Finally, TargetScan organism-specific miRNA gene target database is used to find overlap between mirs_known.tsv and gene targets. ## __References__ 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245920 2. https://github.com/rajewsky-lab/mirdeep2 3. https://biocontainers.pro/tools/mirdeep2 4. https://www.mirbase.org/ 5. http://exocarta.org/index.html 6. https://www.targetscan.org/vert_80/

https://github.com/datirium/workflows.git

Path: workflows/mirna-mirdeep2-se.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph blastp_wnode_naming

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_naming.cwl

Branch/Commit ID: 54c5074587af001a44eccb4762a4cb25fa24cb3e

workflow graph Build STAR indices

Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome.

https://github.com/datirium/workflows.git

Path: workflows/star-index.cwl

Branch/Commit ID: 30031ca5e69cec603c4733681de54dc7bffa20a3

workflow graph qc-assembled.workflow.cwl

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/qc-assembled.workflow.cwl

Branch/Commit ID: d9cf22cd615542c94f7974e8bce4cf29b24d985f

workflow graph Cell Ranger Count (RNA)

Cell Ranger Count (RNA) Quantifies single-cell gene expression of the sequencing data from a single 10x Genomics library. The results of this workflow are primarily used in either “Single-Cell RNA-Seq Filtering Analysis” or “Cell Ranger Aggregate (RNA, RNA+VDJ)” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/single-cell-preprocess-cellranger.cwl

Branch/Commit ID: 30031ca5e69cec603c4733681de54dc7bffa20a3

workflow graph Run genomic CMsearch

https://github.com/ncbi/pgap.git

Path: bacterial_noncoding/wf_gcmsearch.cwl

Branch/Commit ID: 54c5074587af001a44eccb4762a4cb25fa24cb3e

workflow graph gp_makeblastdb

https://github.com/ncbi/pgap.git

Path: progs/gp_makeblastdb.cwl

Branch/Commit ID: 54c5074587af001a44eccb4762a4cb25fa24cb3e

workflow graph Single-Cell RNA-Seq Dimensionality Reduction Analysis

Single-Cell RNA-Seq Dimensionality Reduction Analysis Removes noise and confounding sources of variation by reducing dimensionality of gene expression data from the outputs of “Single-Cell RNA-Seq Filtering Analysis” or “Single-Cell Multiome ATAC and RNA-Seq Filtering Analysis” pipelines. The results of this workflow are primarily used in “Single-Cell RNA-Seq Cluster Analysis” or “Single-Cell WNN Cluster Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-rna-reduce.cwl

Branch/Commit ID: 30031ca5e69cec603c4733681de54dc7bffa20a3