Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
|
env-wf2.cwl
|
![]() Path: cwltool/schemas/v1.0/v1.0/env-wf2.cwl Branch/Commit ID: e835bc0487fe42fb330b6222c9be65d18dd81ec9 |
|
|
pcawg_oxog_wf.cwl
This workflow will perform OxoG filtering on a set of VCFs. It will produce VCFs and their associated index files. |
![]() Path: pcawg_oxog_wf.cwl Branch/Commit ID: 123a3151d35f98e442e703d903dc3e1d72f3c4b0 |
|
|
final_filtering
Final filtering |
![]() Path: structuralvariants/cwl/abstract_operations/subworkflows/final_filtering.cwl Branch/Commit ID: 82e533a98a763a258bd841ed0032c79445478d56 |
|
|
extract_capture_kit_http.cwl
|
![]() Path: workflows/bamfastq_align/extract_capture_kit_http.cwl Branch/Commit ID: dd7f86b3cc10eb1cda07dc2fc279ba2529c8ad61 |
|
|
Xenbase ChIP-Seq pipeline paired-end
1. Convert input SRA file into pair of upsrtream and downstream FASTQ files (run fastq-dump) 2. Analyze quality of FASTQ files (run fastqc with each of the FASTQ files) 3. If any of the following fields in fastqc generated report is marked as failed for at least one of input FASTQ files: \"Per base sequence quality\", \"Per sequence quality scores\", \"Overrepresented sequences\", \"Adapter Content\", - trim adapters (run trimmomatic) 4. Align original or trimmed FASTQ files to reference genome (run Bowtie2) 5. Sort and index generated by Bowtie2 BAM file (run samtools sort, samtools index) 6. Remove duplicates in sorted BAM file (run picard) 7. Sort and index BAM file after duplicates removing (run samtools sort, samtools index) 8. Count mapped reads number in sorted BAM file (run bamtools stats) 9. Generate genome coverage BED file (run bedtools genomecov) 10. Sort genearted BED file (run sort) 11. Generate genome coverage bigWig file from BED file (run bedGraphToBigWig) |
![]() Path: workflows/xenbase-chipseq-pe.cwl Branch/Commit ID: d6ec0dee61ef65a110e10141bde1a79332a64ab0 |
|
|
RNA-Seq pipeline single-read
The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
![]() Path: workflows/rnaseq-se.cwl Branch/Commit ID: 799575ce58746813f066a665adeacdda252d8cab |
|
|
Generate genome index bowtie
Workflow makes indices for [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016). Executes `bowtie-index` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a directory |
![]() Path: workflows/bowtie-index.cwl Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22 |
|
|
revsort.cwl
Reverse the lines in a document, then sort those lines. |
![]() Path: tests/wf/revsort.cwl Branch/Commit ID: e6c2d955a448225f026a04130443d13661844440 |
|
|
RNA-Seq pipeline single-read strand specific
Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
![]() Path: workflows/rnaseq-se-dutp.cwl Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22 |
|
|
RNA-Seq pipeline paired-end stranded mitochondrial
Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file |
![]() Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl Branch/Commit ID: b1a5dabeeeb9079b30b2871edd9c9034a1e00c1c |