Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph DESeq - differential gene expression analysis

Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 9e3c3e65c19873cd1ed3cf7cc3b94ebc75ae0cc5

workflow graph allele-vcf-alignreads-se-pe.cwl

Workflow maps FASTQ files from `fastq_files` input into reference genome `reference_star_indices_folder` and insilico generated `insilico_star_indices_folder` genome (concatenated genome for both `strain1` and `strain2` strains). For both genomes STAR is run with `outFilterMultimapNmax` parameter set to 1 to discard all of the multimapped reads. For insilico genome SAM file is generated. Then it's splitted into two SAM files based on strain names and then sorted by coordinates into the BAM format. For reference genome output BAM file from STAR slignment is also coordinate sorted.

https://github.com/Barski-lab/workflows.git

Path: subworkflows/allele-vcf-alignreads-se-pe.cwl

Branch/Commit ID: fb355eda4555a7e7182a91ce045212b0a087d73f

workflow graph Trim Galore RNA-Seq pipeline paired-end strand specific

Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe-dutp.cwl

Branch/Commit ID: 2cad55523d1b4ee7fd9e64df0f6263c6545e4b0e

workflow graph split-bams-by-strand-and-index.cwl

Split reads in a BAM file by strands and index forward and reverse output BAM files

https://github.com/alexbarrera/ggr-cwl.git

Path: v1.0/quant/split-bams-by-strand-and-index.cwl

Branch/Commit ID: 4e568335133405d28f4b73ae11e7f51f2900dfa3

workflow graph RNA-Seq pipeline paired-end stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl

Branch/Commit ID: 2cad55523d1b4ee7fd9e64df0f6263c6545e4b0e

workflow graph Metagenomics workflow

Workflow for Metagenomics from raw reads to annotated bins. Steps: - workflow_illumina_quality.cwl: - FastQC (control) - fastp (quality trimming) - kraken2 (taxonomy) - bbmap contamination filter - SPAdes (Assembly) - QUAST (Assembly quality report) - BBmap (Read mapping to assembly) - Contig binning (OPTIONAL)

https://git.wur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_metagenomics_assembly.cwl

Branch/Commit ID: 60fafdfbec9b39c860945ef4634e0c28cb5e976c

workflow graph extract_readgroups_bam_http.cwl

https://github.com/nci-gdc/gdc-dnaseq-cwl.git

Path: workflows/bamfastq_align/extract_readgroups_bam_http.cwl

Branch/Commit ID: 8edf6a5e4e7790434ad0742e50d0c97a5d0bb846

workflow graph count-lines9-wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/count-lines9-wf.cwl

Branch/Commit ID: 86c46cb397de029e4c91f02cca40fa2b54d22f37

workflow graph bam_filtering

BAM filtering

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/subworkflows/bam_filtering.cwl

Branch/Commit ID: b62c7bfcf5eb7ac3c1ed06879200fdf5db947e4b

workflow graph Build STAR indices

Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome.

https://github.com/datirium/workflows.git

Path: workflows/star-index.cwl

Branch/Commit ID: 4360fb2e778ecee42e5f78f83b78c65ab3a2b1df