Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore ChIP-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: 46a077b51619c6a14f85e0aa5260ae8a04426fab

workflow graph assm_assm_blastn_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_assm_assm_blastn_wnode.cwl

Branch/Commit ID: 1b8d71c75156a1a62bf0477d59db26010e2dcc29

workflow graph revsort.cwl

Reverse the lines in a document, then sort those lines.

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/revsort.cwl

Branch/Commit ID: 8d8512061f2367c90aac67bcbf92af1061b4af59

workflow graph EMG assembly for paired end Illumina

https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git

Path: workflows/emg-assembly.cwl

Branch/Commit ID: cac44f2cf14110fde9951161c663c4525772f616

workflow graph Create tagAlign file

This workflow creates tagAlign file

https://github.com/ncbi/cwl-ngs-workflows-cbb.git

Path: workflows/File-formats/create-tagAlign.cwl

Branch/Commit ID: 433720e6ba8c2d85b15de3ffb9ce1236f08978a4

workflow graph tt_hmmsearch_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode.cwl

Branch/Commit ID: 686b570a9fa46f3ace3f8e9935490b75df86a1fc

workflow graph blastp_wnode_naming

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_naming.cwl

Branch/Commit ID: add6b7724698694e0e72d972e2e85e1ae4e67902

workflow graph Xenbase RNA-Seq pipeline single-read

1. Convert input SRA file into pair of upsrtream and downstream FASTQ files (run fastq-dump) 2. Analyze quality of FASTQ files (run fastqc with each of the FASTQ files) 3. If any of the following fields in fastqc generated report is marked as failed for at least one of input FASTQ files: \"Per base sequence quality\", \"Per sequence quality scores\", \"Overrepresented sequences\", \"Adapter Content\", - trim adapters (run trimmomatic) 4. Align original or trimmed FASTQ files to reference genome, calculate genes and isoforms expression (run RSEM) 5. Count mapped reads number in sorted BAM file (run bamtools stats) 6. Generate genome coverage BED file (run bedtools genomecov) 7. Sort genearted BED file (run sort) 8. Generate genome coverage bigWig file from BED file (run bedGraphToBigWig)

https://github.com/datirium/workflows.git

Path: workflows/xenbase-rnaseq-se.cwl

Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22

workflow graph RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp.cwl

Branch/Commit ID: 935a78f1aff757f977de4e3672aefead3b23606b

workflow graph EMG pipeline v3.0 (paired end version)

https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git

Path: workflows/emg-pipeline-v3-paired.cwl

Branch/Commit ID: cac44f2cf14110fde9951161c663c4525772f616