Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph sec-wf-out.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/sec-wf-out.cwl

Branch/Commit ID: 20d664eff23e59aa57908345bfdb1ceeab3438f2

workflow graph heatmap-prepare.cwl

Workflow runs homer-make-tag-directory.cwl tool using scatter for the following inputs - bam_file - fragment_size - total_reads `dotproduct` is used as a `scatterMethod`, so one element will be taken from each array to construct each job: 1) bam_file[0] fragment_size[0] total_reads[0] 2) bam_file[1] fragment_size[1] total_reads[1] ... N) bam_file[N] fragment_size[N] total_reads[N] `bam_file`, `fragment_size` and `total_reads` arrays should have the identical order.

https://github.com/datirium/workflows.git

Path: subworkflows/heatmap-prepare.cwl

Branch/Commit ID: 7a4593d2fa5b2fcbedc9219dc5687a4bc5aea66a

workflow graph SSU-from-tablehits.cwl

https://github.com/ebi-metagenomics/ebi-metagenomics-cwl.git

Path: tools/SSU-from-tablehits.cwl

Branch/Commit ID: c34db66a79cec3b66a0f1be5e499eef88db5a9ed

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: 2c486543c335bb99b245dfe7e2f033f535efb9cf

workflow graph Metagenomics workflow

Workflow for Metagenomics from raw reads to annotated bins. Steps: - workflow_illumina_quality.cwl: - FastQC (control) - fastp (quality trimming) - kraken2 (taxonomy) - bbmap contamination filter - SPAdes (Assembly) - QUAST (Assembly quality report) - BBmap (Read mapping to assembly) - Contig binning (OPTIONAL)

https://git.wur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_metagenomics_assembly.cwl

Branch/Commit ID: b9097b82e6ab6f2c9496013ce4dd6877092956a0

workflow graph indexing_bed

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/subworkflows/indexing_bed.cwl

Branch/Commit ID: d2314468d2d2ec177d278899820de1cbfe8c8fb6

workflow graph EMG core analysis for Illumina

https://github.com/proteinswebteam/ebi-metagenomics-cwl.git

Path: workflows/emg-core-analysis-v4.cwl

Branch/Commit ID: 5dc7c5ca618a248a99bd4bf5f3042cdb21947193

workflow graph scatter-wf4.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/scatter-wf4.cwl

Branch/Commit ID: 0e98de8f692bb7b9626ed44af835051750ac20cd

Packed ID: main

workflow graph Build STAR indices

Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome.

https://github.com/datirium/workflows.git

Path: workflows/star-index.cwl

Branch/Commit ID: 8049a781ac4aae579fbd3036fa0bf654532f15be

workflow graph xenbase-sra-to-fastq-pe.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/xenbase-sra-to-fastq-pe.cwl

Branch/Commit ID: 7a4593d2fa5b2fcbedc9219dc5687a4bc5aea66a