Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph DESeq - differential gene expression analysis

Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 581156366f91861bd4dbb5bcb59f67d468b32af3

workflow graph Trim Galore RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: 7fb8a1ebf8145791440bc2fed9c5f2d78a19d04c

workflow graph Filter ChIP/ATAC peaks for Tag Density Profile or Motif Enrichment analyses

Filters ChIP/ATAC peaks with the neatest genes assigned for Tag Density Profile or Motif Enrichment analyses ============================================================================================================ Tool filters output from any ChIP/ATAC pipeline to create a file with regions of interest for Tag Density Profile or Motif Enrichment analyses. Peaks with duplicated coordinates are discarded.

https://github.com/datirium/workflows.git

Path: workflows/filter-peaks-for-heatmap.cwl

Branch/Commit ID: 581156366f91861bd4dbb5bcb59f67d468b32af3

workflow graph umi duplex alignment fastq workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/alignment_umi_duplex.cwl

Branch/Commit ID: 174f3b239018328cec1d821947438b457552724c

workflow graph scatter-wf4.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-wf4.cwl

Branch/Commit ID: 227f35a5ed50c423afba2353871950aa61d58872

Packed ID: main

workflow graph 5S-from-tablehits.cwl

https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git

Path: tools/5S-from-tablehits.cwl

Branch/Commit ID: 43d2fb8a5430dc56b55e84e3986d0079cad8d185

workflow graph Motif Finding with HOMER with target and background regions from peaks

Motif Finding with HOMER with target and background regions from peaks --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis-peak.cwl

Branch/Commit ID: a8eaf61c809d76f55780b14f2febeb363cf6373f

workflow graph assm_assm_blastn_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_assm_assm_blastn_wnode.cwl

Branch/Commit ID: cd97086739ae5988bab09b05e9259675c4b6bce6

workflow graph EMG QC workflow, (paired end version). Benchmarking with MG-RAST expt.

https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git

Path: workflows/emg-qc-single.cwl

Branch/Commit ID: 7bb76f33bf40b5cd2604001cac46f967a209c47f

workflow graph EMG core analysis

https://github.com/proteinswebteam/ebi-metagenomics-cwl.git

Path: workflows/emg-core-analysis-v4.cwl

Branch/Commit ID: cac44f2cf14110fde9951161c663c4525772f616