Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Find reads with predicted coding sequences above 60 AA in length

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/orf_prediction.cwl

Branch/Commit ID: 7bb76f33bf40b5cd2604001cac46f967a209c47f

workflow graph Trim Galore RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: 60854b5d299df91e135e05d02f4be61f6a310fbc

workflow graph taxonomy_check_16S

https://github.com/ncbi/pgap.git

Path: task_types/tt_taxonomy_check_16S.cwl

Branch/Commit ID: 92118627c800e4addb7e29b9dabcca073a5bae71

workflow graph umi duplex alignment workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/duplex_alignment.cwl

Branch/Commit ID: 25eab0390f6866ce491b44c89d9e0435d228ab6f

workflow graph tt_hmmsearch_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode.cwl

Branch/Commit ID: f1eb0f4eaaf1661044f28d859f7e8d4302525ead

workflow graph dynresreq-workflow.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/dynresreq-workflow.cwl

Branch/Commit ID: 0e37d46e793e72b7c16b5ec03e22cb3ce1f55ba3

workflow graph bact_get_kmer_reference

https://github.com/ncbi/pgap.git

Path: task_types/tt_bact_get_kmer_reference.cwl

Branch/Commit ID: 72804b6506c9f54ec75627f82aafe6a28d7a49fa

workflow graph blastp_wnode_struct

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_struct.cwl

Branch/Commit ID: 92118627c800e4addb7e29b9dabcca073a5bae71

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: a8eaf61c809d76f55780b14f2febeb363cf6373f

workflow graph Cut-n-Run pipeline paired-end

Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe-cut-n-run.cwl

Branch/Commit ID: b1a5dabeeeb9079b30b2871edd9c9034a1e00c1c