Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph scatter-wf2.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-wf2.cwl

Branch/Commit ID: 526f36f93655bfb098f766ff020708b5a707513a

workflow graph bact_get_kmer_reference

https://github.com/ncbi/pgap.git

Path: task_types/tt_bact_get_kmer_reference.cwl

Branch/Commit ID: d87a0786b52809b36201adb7d3d3ab2b8bbbef20

workflow graph DiffBind - Differential Binding Analysis of ChIP-Seq or CUTß&RUN/Tag Peak Data

Differential Binding Analysis of ChIP-Seq or CUT&RUN/Tag Peak Data --------------------------------------------------- DiffBind processes ChIP-Seq or CUT&RUN/Tag data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by peak caller tools and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP or CUT&RUN/Tag experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph kmer_build_tree

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_build_tree.cwl

Branch/Commit ID: ca75d68eb74c93b35b404ec7908dc5b260e16466

workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: e3f18c61d1bbf65e40921dbd044369da4523ee3e

workflow graph rnaseq-se-dutp-mitochondrial.cwl

RNA-Seq strand specific mitochondrial workflow for single-read experiment based on BioWardrobe's basic analysis.

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: cb5e5b8563be4977e9f2babc14fe084faa234847

workflow graph Replace legacy AML Trio Assay

https://github.com/apaul7/cancer-genomics-workflow.git

Path: definitions/pipelines/aml_trio_cle.cwl

Branch/Commit ID: bfcb5ffbea3d00a38cc03595d41e53ea976d599d

workflow graph scatter-wf4.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/scatter-wf4.cwl

Branch/Commit ID: ecdfe1ee769d05790f70ac87a711131f441f3753

Packed ID: main

workflow graph fp_filter workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/fp_filter.cwl

Branch/Commit ID: e7e888df9e7d44f036c4c7985e474016ee9e6525

workflow graph RNA-Seq pipeline paired-end stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl

Branch/Commit ID: 4f48ee6f8665a34cdf96e89c012ee807f80c7a3d