Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph snaptools_create_snap_file.cwl

https://github.com/denis-yuen/SnapTools.git

Path: snaptools_create_snap_file.cwl

Branch/Commit ID: 9e4554d12dd0718009a551f3cb591452505f6dad

workflow graph Single-cell Multiome ATAC and RNA-Seq Alignment

Single-cell Multiome ATAC and RNA-Seq Alignment Runs Cell Ranger ARC Count to quantifies chromatin accessibility and gene expression from a single-cell Multiome ATAC and RNA-Seq library

https://github.com/Barski-lab/sc-seq-analysis.git

Path: workflows/sc-multiome-align-wf.cwl

Branch/Commit ID: e70b7fab45e4bd2abfb7dab2b8b1f79ce904ac69

workflow graph Generate ATDP heatmap using Homer

Generate ATDP heatmap centered on TSS from an array of input BAM files and genelist TSV file. Returns array of heatmap JSON files with the names that have the same basenames as input BAM files, but with .json extension

https://github.com/datirium/workflows.git

Path: workflows/heatmap.cwl

Branch/Commit ID: d6ec0dee61ef65a110e10141bde1a79332a64ab0

workflow graph 811.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/811.cwl

Branch/Commit ID: 1441c285e8a5afe399f5d52ca9059cb8bb513edb

workflow graph RNA-Seq pipeline single-read stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: c602e3cdd72ff904dd54d46ba2b5146eb1c57022

workflow graph 03-map-pe.cwl

ChIP-seq 03 mapping - reads: PE

https://github.com/Duke-GCB/GGR-cwl.git

Path: v1.0/ChIP-seq_pipeline/03-map-pe.cwl

Branch/Commit ID: 6da8cef69f3a585fc3e2f4f2f730d361cbe2e978

workflow graph analysis for assembled sequences

rna / protein - qc, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/assembled.workflow.cwl

Branch/Commit ID: 4e4d2e674bde612f98f2b0370445f8b2a47587df

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 799575ce58746813f066a665adeacdda252d8cab

workflow graph cache_test_workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/cache_test_workflow.cwl

Branch/Commit ID: 0e8110083bad6ea98fc487aa262953a6c5e010b5

workflow graph RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: 6bf56698c6fe6e781723dea32bc922b91ef49cf3