Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph tt_blastn_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastn_wnode.cwl

Branch/Commit ID: 89098668413e90519c99b35143bffec509d3599c

workflow graph rnaseq-se-dutp.cwl

RNA-Seq basic analysis workflow for strand specific single-read experiment.

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp.cwl

Branch/Commit ID: cb5e5b8563be4977e9f2babc14fe084faa234847

workflow graph count-lines10-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines10-wf.cwl

Branch/Commit ID: beab66d649dd3ee82a013322a5e830875e8556ba

workflow graph Exome QC workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/qc_exome.cwl

Branch/Commit ID: 25aa4788dd4efb1cc8ed6f609cb7803896e4d28d

workflow graph Workflow to run pVACseq from detect_variants and rnaseq pipeline outputs

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/pvacseq.cwl

Branch/Commit ID: ec45fad68ca10fb64d5c58e704991b146dc31d28

workflow graph scatter-valuefrom-wf6.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-valuefrom-wf6.cwl

Branch/Commit ID: a0f2d38e37ff51721fdeaf993bb2ab474b17246b

workflow graph GAT - Genomic Association Tester

GAT: Genomic Association Tester ============================================== A common question in genomic analysis is whether two sets of genomic intervals overlap significantly. This question arises, for example, in the interpretation of ChIP-Seq or RNA-Seq data. The Genomic Association Tester (GAT) is a tool for computing the significance of overlap between multiple sets of genomic intervals. GAT estimates significance based on simulation. Gat implemements a sampling algorithm. Given a chromosome (workspace) and segments of interest, for example from a ChIP-Seq experiment, gat creates randomized version of the segments of interest falling into the workspace. These sampled segments are then compared to existing genomic annotations. The sampling method is conceptually simple. Randomized samples of the segments of interest are created in a two-step procedure. Firstly, a segment size is selected from to same size distribution as the original segments of interest. Secondly, a random position is assigned to the segment. The sampling stops when exactly the same number of nucleotides have been sampled. To improve the speed of sampling, segment overlap is not resolved until the very end of the sampling procedure. Conflicts are then resolved by randomly removing and re-sampling segments until a covering set has been achieved. Because the size of randomized segments is derived from the observed segment size distribution of the segments of interest, the actual segment sizes in the sampled segments are usually not exactly identical to the ones in the segments of interest. This is in contrast to a sampling method that permutes segment positions within the workspace.

https://github.com/datirium/workflows.git

Path: workflows/gat-run.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph bact_get_kmer_reference

https://github.com/ncbi/pgap.git

Path: task_types/tt_bact_get_kmer_reference.cwl

Branch/Commit ID: 251343ee5b7586ba2cf89458555f1da87a7558f2

workflow graph Generate genome indices for Bismark

Copy genome_fasta file to the folder and run run bismark_genome_preparation script to prepare indices for Bismark Methylation Analysis. Bowtie2 aligner is used by default. The name of the output indices folder is equal to the genome_fasta file basename without extension.

https://github.com/datirium/workflows.git

Path: workflows/bismark-indices.cwl

Branch/Commit ID: d6f58c383d0676269afb519399061191a1144a6a

workflow graph Bismark Methylation - pipeline for BS-Seq data analysis

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: d6f58c383d0676269afb519399061191a1144a6a