Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
Subsample BAM file creating a tagAlign and pseudoreplicates
This workflow creates a subsample from a BAM file creating a tagAlign and pseudoreplicates |
https://github.com/ncbi/cwl-ngs-workflows-cbb.git
Path: workflows/File-formats/subample-pseudoreplicates.cwl Branch/Commit ID: 433720e6ba8c2d85b15de3ffb9ce1236f08978a4 |
||
CLIP-Seq pipeline for single-read experiment NNNNG
Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome. |
https://github.com/datirium/workflows.git
Path: workflows/clipseq-se.cwl Branch/Commit ID: a0b22644ca178b640fb74849d23b7c631022f0b5 |
||
RNA-Seq pipeline single-read strand specific
Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
https://github.com/datirium/workflows.git
Path: workflows/rnaseq-se-dutp.cwl Branch/Commit ID: ebbf23764ede324cabc064bd50647c1f643726fa |
||
cnv_exomedepth
CNV ExomeDepth calling |
https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git
Path: structuralvariants/cwl/subworkflows/cnv_exome_depth.cwl Branch/Commit ID: a4a3547b9790e99a58424a0dfcb4e467a7691d6a |
||
Compute library complexity
This workflow compute library complexity |
https://github.com/ncbi/cwl-ngs-workflows-cbb.git
Path: workflows/File-formats/bedtools-bam-pbc.cwl Branch/Commit ID: 433720e6ba8c2d85b15de3ffb9ce1236f08978a4 |
||
bam-bedgraph-bigwig.cwl
Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow. |
https://github.com/datirium/workflows.git
Path: tools/bam-bedgraph-bigwig.cwl Branch/Commit ID: ebbf23764ede324cabc064bd50647c1f643726fa |
||
scatter-wf4.cwl#main
|
https://github.com/common-workflow-language/cwltool.git
Path: cwltool/schemas/v1.0/v1.0/scatter-wf4.cwl Branch/Commit ID: 03af16c9df2ee77485d4ab092cd64ae096d2e71c Packed ID: main |
||
dna.cwl#main
|
https://github.com/common-workflow-library/legacy.git
Path: workflows/make-to-cwl/dna.cwl Branch/Commit ID: 767d700e602805112a4c953d166e570cddfa2605 Packed ID: main |
||
Cut-n-Run pipeline paired-end
Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed |
https://github.com/datirium/workflows.git
Path: workflows/trim-chipseq-pe-cut-n-run.cwl Branch/Commit ID: 7518b100d8cbc80c8be32e9e939dfbb27d6b4361 |
||
tRNA_selection.cwl
|
https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git
Path: tools/tRNA_selection.cwl Branch/Commit ID: 9c57dba558a4e04a1884eae1df8431dcaccafc1e |