Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph ChIP-Seq pipeline single-read

# ChIP-Seq basic analysis workflow for single-read data Reads are aligned to the reference genome with [Bowtie](http://bowtie-bio.sourceforge.net/index.shtml). Results are saved as coordinate sorted [BAM](http://samtools.github.io/hts-specs/SAMv1.pdf) alignment and index BAI files. Optionally, PCR duplicates can be removed. To obtain coverage in [bigWig](https://genome.ucsc.edu/goldenpath/help/bigWig.html) format, average fragment length is calculated by [MACS2](https://github.com/taoliu/MACS), and individual reads are extended to this length in the 3’ direction. Areas of enrichment identified by MACS2 are saved in ENCODE [narrow peak](http://genome.ucsc.edu/FAQ/FAQformat.html#format12) or [broad peak](https://genome.ucsc.edu/FAQ/FAQformat.html#format13) formats. Called peaks together with the nearest genes are saved in TSV format. In addition to basic statistics (number of total/mapped/multi-mapped/unmapped/duplicate reads), pipeline generates several quality control measures. Base frequency plots are used to estimate adapter contamination, a frequent occurrence in low-input ChIP-Seq experiments. Expected distinct reads count from [Preseq](http://smithlabresearch.org/software/preseq/) can be used to estimate read redundancy for a given sequencing depth. Average tag density profiles can be used to estimate ChIP enrichment for promoter proximal histone modifications. Use of different parameters for different antibodies (calling broad or narrow peaks) is possible. Additionally, users can elect to use BAM file from another experiment as control for MACS2 peak calling. ## Cite as *Kartashov AV, Barski A. BioWardrobe: an integrated platform for analysis of epigenomics and transcriptomics data. Genome Biol. 2015;16(1):158. Published 2015 Aug 7. [doi:10.1186/s13059-015-0720-3](https://www.ncbi.nlm.nih.gov/pubmed/26248465)* ## Software versions - Bowtie 1.2.0 - Samtools 1.4 - Preseq 2.0 - MACS2 2.1.1.20160309 - Bedtools 2.26.0 - UCSC userApps v358 ## Inputs | ID | Label | Description | Required | Default | Upstream analyses | | ------------------------- | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------: | ------- | ------------------------------- | | **fastq\_file** | FASTQ file | Single-read sequencing data in FASTQ format (fastq, fq, bzip2, gzip, zip) | + | | | | **indices\_folder** | Genome indices | Directory with the genome indices generated by Bowtie | + | | genome\_indices/bowtie\_indices | | **annotation\_file** | Genome annotation file | Genome annotation file in TSV format | + | | genome\_indices/annotation | | **genome\_size** | Effective genome size | The length of the mappable genome (hs, mm, ce, dm or number, for example 2.7e9) | + | | genome\_indices/genome\_size | | **chrom\_length** | Chromosome lengths file | Chromosome lengths file in TSV format | + | | genome\_indices/chrom\_length | | **broad\_peak** | Call broad peaks | Make MACS2 call broad peaks by linking nearby highly enriched regions | + | | | | **control\_file** | Control ChIP-Seq single-read experiment | Indexed BAM file from the ChIP-Seq single-read experiment to be used as a control for MACS2 peak calling | | Null | control\_file/bambai\_pair | | **exp\_fragment\_size** | Expected fragment size | Expected fragment size for read extenstion towards 3' end if *force\_fragment\_size* was set to True or if calculated by MACS2 fragment size was less that 80 bp | | 150 | | | **force\_fragment\_size** | Force peak calling with expected fragment size | Make MACS2 don't build the shifting model and use expected fragment size for read extenstion towards 3' end | | False | | | **clip\_3p\_end** | Clip from 3' end | Number of base pairs to clip from 3' end | | 0 | | | **clip\_5p\_end** | Clip from 5' end | Number of base pairs to clip from 5' end | | 0 | | | **remove\_duplicates** | Remove PCR duplicates | Remove PCR duplicates from sorted BAM file | | False | | | **threads** | Number of threads | Number of threads for those steps that support multithreading | | 2 | | ## Outputs | ID | Label | Description | Required | Visualization | | ------------------------ | ---------------------------------- | ------------------------------------------------------------------------------------ | :------: | ------------------------------------------------------------------ | | **fastx\_statistics** | FASTQ quality statistics | FASTQ quality statistics in TSV format | + | *Base Frequency* and *Quality Control* plots in *QC Plots* tab | | **bambai\_pair** | Aligned reads | Coordinate sorted BAM alignment and index BAI files | + | *Nucleotide Sequence Alignments* track in *IGV Genome Browser* tab | | **bigwig** | Genome coverage | Genome coverage in bigWig format | + | *Genome Coverage* track in *IGV Genome Browser* tab | | **iaintersect\_result** | Gene annotated peaks | MACS2 peak file annotated with nearby genes | + | *Peak Coordinates* table in *Peak Calling* tab | | **atdp\_result** | Average Tag Density Plot | Average Tag Density Plot file in TSV format | + | *Average Tag Density Plot* in *QC Plots* tab | | **macs2\_called\_peaks** | Called peaks | Called peaks file with 1-based coordinates in XLS format | + | | | **macs2\_narrow\_peaks** | Narrow peaks | Called peaks file in ENCODE narrow peak format | | *Narrow peaks* track in *IGV Genome Browser* tab | | **macs2\_broad\_peaks** | Broad peaks | Called peaks file in ENCODE broad peak format | | *Broad peaks* track in *IGV Genome Browser* tab | | **preseq\_estimates** | Expected Distinct Reads Count Plot | Expected distinct reads count file from Preseq in TSV format | | *Expected Distinct Reads Count Plot* in *QC Plots* tab | | **workflow\_statistics** | Workflow execution statistics | Overall workflow execution statistics from bowtie\_aligner and samtools\_rmdup steps | + | *Overview* tab and experiment's preview | | **bowtie\_log** | Read alignment log | Read alignment log file from Bowtie | + | |

https://github.com/datirium/workflows.git

Path: workflows/chipseq-se.cwl

Branch/Commit ID: b1a5dabeeeb9079b30b2871edd9c9034a1e00c1c

workflow graph scatterfail.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/scatterfail.cwl

Branch/Commit ID: e6c2d955a448225f026a04130443d13661844440

workflow graph workflow_mock_ngtax.cwl

https://git.wageningenur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_mock_ngtax.cwl

Branch/Commit ID: 0dd868de067a386be8ec6b147df007e213c7275a

workflow graph env-wf2.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/env-wf2.cwl

Branch/Commit ID: e835bc0487fe42fb330b6222c9be65d18dd81ec9

workflow graph pcawg_oxog_wf.cwl

This workflow will perform OxoG filtering on a set of VCFs. It will produce VCFs and their associated index files.

https://github.com/icgc-tcga-pancancer/pcawg-oxog-filter.git

Path: pcawg_oxog_wf.cwl

Branch/Commit ID: 123a3151d35f98e442e703d903dc3e1d72f3c4b0

workflow graph final_filtering

Final filtering

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/abstract_operations/subworkflows/final_filtering.cwl

Branch/Commit ID: 82e533a98a763a258bd841ed0032c79445478d56

workflow graph extract_capture_kit_http.cwl

https://github.com/nci-gdc/gdc-dnaseq-cwl.git

Path: workflows/bamfastq_align/extract_capture_kit_http.cwl

Branch/Commit ID: dd7f86b3cc10eb1cda07dc2fc279ba2529c8ad61

workflow graph Xenbase ChIP-Seq pipeline paired-end

1. Convert input SRA file into pair of upsrtream and downstream FASTQ files (run fastq-dump) 2. Analyze quality of FASTQ files (run fastqc with each of the FASTQ files) 3. If any of the following fields in fastqc generated report is marked as failed for at least one of input FASTQ files: \"Per base sequence quality\", \"Per sequence quality scores\", \"Overrepresented sequences\", \"Adapter Content\", - trim adapters (run trimmomatic) 4. Align original or trimmed FASTQ files to reference genome (run Bowtie2) 5. Sort and index generated by Bowtie2 BAM file (run samtools sort, samtools index) 6. Remove duplicates in sorted BAM file (run picard) 7. Sort and index BAM file after duplicates removing (run samtools sort, samtools index) 8. Count mapped reads number in sorted BAM file (run bamtools stats) 9. Generate genome coverage BED file (run bedtools genomecov) 10. Sort genearted BED file (run sort) 11. Generate genome coverage bigWig file from BED file (run bedGraphToBigWig)

https://github.com/datirium/workflows.git

Path: workflows/xenbase-chipseq-pe.cwl

Branch/Commit ID: d6ec0dee61ef65a110e10141bde1a79332a64ab0

workflow graph RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se.cwl

Branch/Commit ID: 799575ce58746813f066a665adeacdda252d8cab

workflow graph Generate genome index bowtie

Workflow makes indices for [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016). Executes `bowtie-index` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a directory

https://github.com/datirium/workflows.git

Path: workflows/bowtie-index.cwl

Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22