Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
|
ani_top_n
|
![]() Path: task_types/tt_ani_top_n.cwl Branch/Commit ID: be5ae41801b19ebc69a2889d8fdb39e8e2359611 |
|
|
wffail.cwl
|
![]() Path: tests/wf/wffail.cwl Branch/Commit ID: e2ec740fccc81ff7071dcd607c5c158fbc0dfb90 |
|
|
Replace legacy AML Trio Assay
|
![]() Path: definitions/pipelines/aml_trio_cle.cwl Branch/Commit ID: d3e4bf55753cd92f97537c7d701187ea92d1e5f0 |
|
|
kmer_seq_entry_extract_wnode
|
![]() Path: task_types/tt_kmer_seq_entry_extract_wnode.cwl Branch/Commit ID: 90a321ecf2d049330bcf0657cc4d764d2c3f42dd |
|
|
phase VCF
|
![]() Path: definitions/subworkflows/phase_vcf.cwl Branch/Commit ID: 7f9dfad8e45ca096ae738cff646195b2b1ba7d7f |
|
|
count-lines3-wf.cwl
|
![]() Path: cwltool/schemas/v1.0/v1.0/count-lines3-wf.cwl Branch/Commit ID: 49cd284a8fc7884de763573075d3e1d6a4c1ffdd |
|
|
wgs alignment and tumor-only variant detection
|
![]() Path: definitions/pipelines/wgs.cwl Branch/Commit ID: f21b6c6f70f01d0fe08193684060161107f0bf59 |
|
|
scatter-valuefrom-wf3.cwl#main
|
![]() Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf3.cwl Branch/Commit ID: beab66d649dd3ee82a013322a5e830875e8556ba Packed ID: main |
|
|
exome alignment and tumor-only variant detection
|
![]() Path: definitions/pipelines/exome.cwl Branch/Commit ID: aba52e94b6d7470132d3c092c26d67e29d615300 |
|
|
Variant calling germline paired-end
A workflow for the Broad Institute's best practices gatk4 germline variant calling pipeline. ## __Outputs__ #### Primary Output files: - bqsr2_indels.vcf, filtered and recalibrated indels (IGV browser) - bqsr2_snps.vcf, filtered and recalibrated snps (IGV browser) - bqsr2_snps.ann.vcf, filtered and recalibrated snps with effect annotations #### Secondary Output files: - sorted_dedup_reads.bam, sorted deduplicated alignments (IGV browser) - raw_indels.vcf, first pass indel calls - raw_snps.vcf, first pass snp calls #### Reports: - overview.md (input list, alignment metrics, variant counts) - insert_size_histogram.pdf - recalibration_plots.pdf - snpEff_summary.html ## __Inputs__ #### General Info - Sample short name/Alias: unique name for sample - Experimental condition: condition, variable, etc name (e.g. \"control\" or \"20C 60min\") - Cells: name of cells used for the sample - Catalog No.: vender catalog number if available - BWA index: BWA index sample that contains reference genome FASTA with associated indices. - SNPEFF database: Name of SNPEFF database to use for SNP effect annotation. - Read 1 file: First FASTQ file (generally contains \"R1\" in the filename) - Read 2 file: Paired FASTQ file (generally contains \"R2\" in the filename) #### Advanced - Ploidy: number of copies per chromosome (default should be 2) - SNP filters: see Step 6 Notes: https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ - Indel filters: see Step 7 Notes: https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ #### SNPEFF notes: Get snpeff databases using `docker run --rm -ti gatk4-dev /bin/bash` then running `java -jar $SNPEFF_JAR databases`. Then, use the first column as SNPEFF input (e.g. \"hg38\"). - hg38, Homo_sapiens (USCS), http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_hg38.zip - mm10, Mus_musculus, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_mm10.zip - dm6.03, Drosophila_melanogaster, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_dm6.03.zip - Rnor_6.0.86, Rattus_norvegicus, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_Rnor_6.0.86.zip - R64-1-1.86, Saccharomyces_cerevisiae, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_R64-1-1.86.zip ### __Data Analysis Steps__ 1. Trimming the adapters with TrimGalore. - This step is particularly important when the reads are long and the fragments are short - resulting in sequencing adapters at the ends of reads. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nextera/Tn5 adapters. 2. Generate quality control statistics of trimmed, unmapped sequence data 3. Run germline variant calling pipeline, custom wrapper script implementing Steps 1 - 17 of the Broad Institute's best practices gatk4 germline variant calling pipeline (https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/) ### __References__ 1. https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ 2. https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels- 3. https://software.broadinstitute.org/software/igv/VCF |
![]() Path: workflows/vc-germline-pe.cwl Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e |