Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
count-lines6-wf.cwl
|
https://github.com/common-workflow-language/cwl-v1.1.git
Path: tests/count-lines6-wf.cwl Branch/Commit ID: 0e37d46e793e72b7c16b5ec03e22cb3ce1f55ba3 |
||
Motif Finding with HOMER with random background regions
Motif Finding with HOMER with random background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. Here is how we generate background for Motifs Analysis ------------------------------------- 1. Take input file with regions in a form of “chr\" “start\" “end\" 2. Sort and remove duplicates from this regions file 3. Extend each region in 20Kb into both directions 4. Merge all overlapped extended regions 5. Subtract not extended regions from the extended ones 6. Randomly distribute not extended regions within the regions that we got as a result of the previous step 7. Get fasta file from these randomly distributed regions (from the previous step). Use it as background For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/) |
https://github.com/datirium/workflows.git
Path: workflows/homer-motif-analysis.cwl Branch/Commit ID: 60854b5d299df91e135e05d02f4be61f6a310fbc |
||
kmer_cache_store
|
https://github.com/ncbi/pgap.git
Path: task_types/tt_kmer_cache_store.cwl Branch/Commit ID: 8fb4ac7f5a66897206c7469101a471108b06eada |
||
bam-bedgraph-bigwig.cwl
Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow. |
https://github.com/datirium/workflows.git
Path: tools/bam-bedgraph-bigwig.cwl Branch/Commit ID: 4ab9399a4777610a579ea2c259b9356f27641dcc |
||
align_sort_sa
|
https://github.com/ncbi/pgap.git
Path: task_types/tt_align_sort_sa.cwl Branch/Commit ID: 686b570a9fa46f3ace3f8e9935490b75df86a1fc |
||
umi molecular alignment workflow
|
https://github.com/genome/analysis-workflows.git
Path: definitions/subworkflows/molecular_qc.cwl Branch/Commit ID: 6b365b79675b2aabfb8d5829bb8df0a6e986b037 |
||
format_rrnas_from_seq_entry
|
https://github.com/ncbi/pgap.git
Path: task_types/tt_format_rrnas_from_seq_entry.cwl Branch/Commit ID: 505b91e41741ccbcd5ebd2b6a09a3be604f9ece3 |
||
ChIP-Seq pipeline paired-end
The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file. |
https://github.com/datirium/workflows.git
Path: workflows/chipseq-pe.cwl Branch/Commit ID: 104059e07a2964673e21d371763e33c0afeb2d03 |
||
kmer_cache_store
|
https://github.com/ncbi/pgap.git
Path: task_types/tt_kmer_cache_store.cwl Branch/Commit ID: 686b570a9fa46f3ace3f8e9935490b75df86a1fc |
||
trimmed_fastq
Quality Control (raw data), Raw Data trimming and Quality Control (pre-processed) |
https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git
Path: structuralvariants/cwl/abstract_operations/subworkflows/trimmed_fastq.cwl Branch/Commit ID: 82e533a98a763a258bd841ed0032c79445478d56 |