Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Cut-n-Run pipeline paired-end

Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe-cut-n-run.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph Motif Finding with HOMER with random background regions

Motif Finding with HOMER with random background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. Here is how we generate background for Motifs Analysis ------------------------------------- 1. Take input file with regions in a form of “chr\" “start\" “end\" 2. Sort and remove duplicates from this regions file 3. Extend each region in 20Kb into both directions 4. Merge all overlapped extended regions 5. Subtract not extended regions from the extended ones 6. Randomly distribute not extended regions within the regions that we got as a result of the previous step 7. Get fasta file from these randomly distributed regions (from the previous step). Use it as background For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph DiffBind - Differential Binding Analysis of ChIP-Seq Peak Data

Differential Binding Analysis of ChIP-Seq Peak Data --------------------------------------------------- DiffBind processes ChIP-Seq data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph step-valuefrom-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom-wf.cwl

Branch/Commit ID: 58274ef14adbbf7e09dbf6e5170780179669078b

workflow graph PCA - Principal Component Analysis

Principal Component Analysis --------------- Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. The calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix. This is generally the preferred method for numerical accuracy.

https://github.com/datirium/workflows.git

Path: workflows/pca.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph FastQC - a quality control tool for high throughput sequence data

FastQC - a quality control tool for high throughput sequence data ===================================== FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis. The main functions of FastQC are: - Import of data from FastQ files (any variant) - Providing a quick overview to tell you in which areas there may be problems - Summary graphs and tables to quickly assess your data - Export of results to an HTML based permanent report - Offline operation to allow automated generation of reports without running the interactive application

https://github.com/datirium/workflows.git

Path: workflows/fastqc.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph Motif Finding with HOMER with custom background regions

Motif Finding with HOMER with custom background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis-bg.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph genomics-workspace-transcript.cwl

https://github.com/NAL-i5K/Organism_Onboarding.git

Path: flow_genomicsWorkspace/genomics-workspace-transcript.cwl

Branch/Commit ID: 7198756b4b1519d102178042924671bd677e9b17

workflow graph Build Bismark indices

Copy fasta_file file to the folder and run run bismark_genome_preparation script to prepare indices for Bismark Methylation Analysis. Bowtie2 aligner is used by default. The name of the output indices folder is equal to the genome input.

https://github.com/datirium/workflows.git

Path: workflows/bismark-index.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389