Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
EMG pipeline's QIIME workflow
Step 1: Set environment PYTHONPATH, QIIME_ROOT, PATH Step 2: Run QIIME script pick_closed_reference_otus.py ${python} ${qiimeDir}/bin/pick_closed_reference_otus.py -i $1 -o $2 -r ${qiimeDir}/gg_13_8_otus/rep_set/97_otus.fasta -t ${qiimeDir}/gg_13_8_otus/taxonomy/97_otu_taxonomy.txt -p ${qiimeDir}/cr_otus_parameters.txt Step 3: Convert new biom format to old biom format (json) ${qiimeDir}/bin/biom convert -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table_json.biom --table-type=\"OTU table\" --to-json Step 4: Convert new biom format to a classic OTU table. ${qiimeDir}/bin/biom convert -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table.txt --to-tsv --header-key taxonomy --table-type \"OTU table\" Step 5: Create otu summary ${qiimeDir}/bin/biom summarize-table -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table_summary.txt Step 6: Move one of the result files mv ${resultDir}/cr_otus/otu_table.biom ${resultDir}/cr_otus/${infileBase}_otu_table_hdf5.biom Step 7: Create a list of observations awk '{print $1}' ${resultDir}/cr_otus/${infileBase}_otu_table.txt | sed '/#/d' > ${resultDir}/cr_otus/${infileBase}_otu_observations.txt Step 8: Create a phylogenetic tree by pruning GreenGenes and keeping observed otus ${python} ${qiimeDir}/bin/filter_tree.py -i ${qiimeDir}/gg_13_8_otus/trees/97_otus.tree -t ${resultDir}/cr_otus/${infileBase}_otu_observations.txt -o ${resultDir}/cr_otus/${infileBase}_pruned.tree |
Path: workflows/qiime-workflow.cwl Branch/Commit ID: 8e196ab |
|
|
|
SetArrayElementCoordinates
Transform array element coordinates into the coordinate system required by the simulation pipeline (i.e., CORSIKA system). |
Path: workflows/SetArrayElementCoordinates.cwl Branch/Commit ID: main |
|
|
|
Apply filters to VCF file
|
Path: subworkflows/filter_vcf.cwl Branch/Commit ID: master |
|
|
|
scRNA-seq pipeline using Salmon and Alevin
|
Path: pipeline.cwl Branch/Commit ID: 6591870 |
|
|
|
QIIME2 Step 2 (DADA2 option)
QIIME2 DADA2, feature summaries, phylogenetic diversity tree, taxonomic analysis and ancom |
Path: 16s-step2-dada2-paired.cwl Branch/Commit ID: develop |
|
|
|
steps.cwl
|
Path: steps.cwl Branch/Commit ID: master |
|
|
|
cmsearch-multimodel.cwl
|
Path: workflows/cmsearch-multimodel.cwl Branch/Commit ID: 930a2cf |
|
|
|
Optical throughput measurements via muon ring analysis
Upon receiving a new DL0 data product (from either Monte Carlo simulations or observations), DPPS triggers the CalibPipe (ctapipe-process) to process the data using ctapipe, extracting the signal charges and reconstructing muon parameters. The second step involves using the CalibPipe tool to estimate the telescope’s optical throughput using a predefined number of muon events. |
Path: uc-optical-throughput-calibration-with-muons.cwl Branch/Commit ID: master |
|
|
|
CNV_pipeline
|
Path: structuralvariants/cwl/abstract_workflow/abstract_workflow.cwl Branch/Commit ID: master |
|
|
|
Run tRNAScan
|
Path: bacterial_trna/wf_trnascan.cwl Branch/Commit ID: master |
