Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
Trim Galore RNA-Seq pipeline paired-end strand specific
Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
https://github.com/datirium/workflows.git
Path: workflows/trim-rnaseq-pe-dutp.cwl Branch/Commit ID: 7fb8a1ebf8145791440bc2fed9c5f2d78a19d04c |
||
preference-workflow.cwl
|
https://github.com/johnbradley/imads-worker.git
Path: predict_service/preference-workflow.cwl Branch/Commit ID: 308f28c12949210735184154dd7722eb6ec06977 |
||
cnv_gridss
CNV GRIDSS calling |
https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git
Path: structuralvariants/cwl/abstract_operations/subworkflows/cnv_gridss.cwl Branch/Commit ID: de9cb009f8fe0c8d5a94db5c882cf21ddf372452 |
||
MAnorm PE - quantitative comparison of ChIP-Seq paired-end data
What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000 |
https://github.com/datirium/workflows.git
Path: workflows/manorm-pe.cwl Branch/Commit ID: 91bb63948c0a264334b9007ef85f936768d90d11 |
||
Xenbase RNA-Seq pipeline single-read
1. Convert input SRA file into pair of upsrtream and downstream FASTQ files (run fastq-dump) 2. Analyze quality of FASTQ files (run fastqc with each of the FASTQ files) 3. If any of the following fields in fastqc generated report is marked as failed for at least one of input FASTQ files: \"Per base sequence quality\", \"Per sequence quality scores\", \"Overrepresented sequences\", \"Adapter Content\", - trim adapters (run trimmomatic) 4. Align original or trimmed FASTQ files to reference genome, calculate genes and isoforms expression (run RSEM) 5. Count mapped reads number in sorted BAM file (run bamtools stats) 6. Generate genome coverage BED file (run bedtools genomecov) 7. Sort genearted BED file (run sort) 8. Generate genome coverage bigWig file from BED file (run bedGraphToBigWig) |
https://github.com/datirium/workflows.git
Path: workflows/xenbase-rnaseq-se.cwl Branch/Commit ID: bfa3843bcf36125ff258d6314f64b41336f06e6b |
||
RNA-Seq pipeline single-read stranded mitochondrial
Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file |
https://github.com/datirium/workflows.git
Path: workflows/rnaseq-se-dutp-mitochondrial.cwl Branch/Commit ID: b957a4f681bf0ca8ebba4e0d0ec3936bf79620c5 |
||
PCA - Principal Component Analysis
Principal Component Analysis --------------- Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. The calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix. This is generally the preferred method for numerical accuracy. |
https://github.com/datirium/workflows.git
Path: workflows/pca.cwl Branch/Commit ID: 9850a859de1f42d3d252c50e15701928856fe774 |
||
env-wf1.cwl
|
https://github.com/common-workflow-language/cwl-v1.2.git
Path: tests/env-wf1.cwl Branch/Commit ID: 5f27e234b4ca88ed1280dedf9e3391a01de12912 |
||
RNA-seq (VCF) alelle specific pipeline for paired-end data
Allele specific RNA-Seq (using vcf) paired-end workflow |
https://github.com/datirium/workflows.git
Path: workflows/allele-vcf-rnaseq-pe.cwl Branch/Commit ID: 6bf56698c6fe6e781723dea32bc922b91ef49cf3 |
||
cgpRna_workflow.cwl
|
https://github.com/cancerit/cgpRna.git
Path: cwls/cgpRna_workflow.cwl Branch/Commit ID: 5dce0b09e5a8845458ae2bef08c1cfbff0c01d63 |