Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph EMG assembly for paired end Illumina

https://github.com/proteinswebteam/ebi-metagenomics-cwl.git

Path: workflows/emg-assembly.cwl

Branch/Commit ID: cac44f2cf14110fde9951161c663c4525772f616

workflow graph Single-cell Assign Cell Types

Single-cell Assign Cell Types ============================= Assigns cell types to Seurat clusters.

https://github.com/datirium/workflows.git

Path: workflows/sc-assign-cell-types.cwl

Branch/Commit ID: 1a46cb0e8f973481fe5ae3ae6188a41622c8532e

workflow graph Filter differentially expressed genes from DESeq for Tag Density Profile Analyses

Filters differentially expressed genes from DESeq for Tag Density Profile Analyses ================================================================================== Tool filters output from DESeq pipeline run for genes to create a file with regions of interest for Tag Density Profile Analyses.

https://github.com/datirium/workflows.git

Path: workflows/filter-deseq-for-heatmap.cwl

Branch/Commit ID: 8049a781ac4aae579fbd3036fa0bf654532f15be

workflow graph RNA-Seq pipeline paired-end stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl

Branch/Commit ID: e45ab1b9ac5c9b99fdf7b3b1be396dc42c2c9620

workflow graph BAM to BEDPE

Comvert BAM to BEDPE and compress the output

https://github.com/ncbi/cwl-ngs-workflows-cbb.git

Path: workflows/File-formats/bamtobedpe-gzip.cwl

Branch/Commit ID: e541470bc9d0b064bc4ed7dd2b45d8ec67760613

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: 1a46cb0e8f973481fe5ae3ae6188a41622c8532e

workflow graph hello_world.cwl

https://github.com/Richard-Hansen/hello_world.git

Path: hello_world.cwl

Branch/Commit ID: 672acbfe4fcd5472c7a6294444bc3c52bfc44c42

workflow graph kmer_top_n_extract

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n_extract.cwl

Branch/Commit ID: 664e99a23a3ed4ba36c08323ac597c4fbcd88df1

workflow graph AltAnalyze ICGS

AltAnalyze ICGS ===============

https://github.com/datirium/workflows.git

Path: workflows/altanalyze-icgs.cwl

Branch/Commit ID: 935a78f1aff757f977de4e3672aefead3b23606b

workflow graph rna amplicon analysis for fasta files

RNAs - qc, preprocess, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/amplicon-fasta.workflow.cwl

Branch/Commit ID: 091374dc59a23966338638a668ae397d4ee20b2f