Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: 10ce6e113f749c7bd725e426445220c3bdc5ddf1

workflow graph assm_assm_blastn_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_assm_assm_blastn_wnode.cwl

Branch/Commit ID: 8cc9b995bca666c54c673a5eb8d9b8c6f8e84490

workflow graph js_output_workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/js_output_workflow.cwl

Branch/Commit ID: 12993a6eb60f5ccb4edbe77cb6de661cfc496090

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: 2f0db4b3c515f91c5cfda19c78cf90d339390986

workflow graph group-isoforms-batch.cwl

Workflow runs group-isoforms.cwl tool using scatter for isoforms_file input. genes_filename and common_tss_filename inputs are ignored.

https://github.com/datirium/workflows.git

Path: tools/group-isoforms-batch.cwl

Branch/Commit ID: 581156366f91861bd4dbb5bcb59f67d468b32af3

workflow graph RNA-Seq pipeline paired-end stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl

Branch/Commit ID: 480e99a4bb3046e0565113d9dca294e0895d3b0c

workflow graph hisat2-cufflinks_wf_pe.cwl

https://github.com/pitagora-network/pitagora-cwl.git

Path: workflows/hisat2-cufflinks/paired_end/hisat2-cufflinks_wf_pe.cwl

Branch/Commit ID: cd79f2db4b166d205456ab718e2581d6ab6e9f23

workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: 8cc9b995bca666c54c673a5eb8d9b8c6f8e84490

workflow graph Build STAR indices

Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome.

https://github.com/datirium/workflows.git

Path: workflows/star-index.cwl

Branch/Commit ID: ad948b2691ef7f0f34de38f0102c3cd6f5182b29

workflow graph cache_test_workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/cache_test_workflow.cwl

Branch/Commit ID: 12993a6eb60f5ccb4edbe77cb6de661cfc496090