Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
Motif Finding with HOMER with custom background regions
Motif Finding with HOMER with custom background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/) |
https://github.com/datirium/workflows.git
Path: workflows/homer-motif-analysis-bg.cwl Branch/Commit ID: a839eb6390974089e1a558c49fc07b4c66c50767 |
||
Trim Galore RNA-Seq pipeline single-read
The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
https://github.com/datirium/workflows.git
Path: workflows/trim-rnaseq-se.cwl Branch/Commit ID: 10ce6e113f749c7bd725e426445220c3bdc5ddf1 |
||
EMG assembly for paired end Illumina
|
https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git
Path: workflows/emg-pipeline-v4-assembly-metaSPAdes.cwl Branch/Commit ID: ecf044f3a5a7589cb2238487a19f22863c2bcdb1 |
||
Single-cell RNA-Seq Alignment
Single-cell RNA-Seq Alignment ================================================== Runs Cell Ranger Count to quantify gene expression from a single-cell RNA-Seq library. |
https://github.com/Barski-lab/scRNA-Seq-Analysis.git
Path: workflows/sc-rna-align-wf.cwl Branch/Commit ID: 280cad66c2a5b2e1b66e4f8a5469942e88df5b74 |
||
Motif Finding with HOMER with target and background regions from peaks
Motif Finding with HOMER with target and background regions from peaks --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/) |
https://github.com/datirium/workflows.git
Path: workflows/homer-motif-analysis-peak.cwl Branch/Commit ID: a839eb6390974089e1a558c49fc07b4c66c50767 |
||
Generate genome indices for STAR & bowtie
Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files |
https://github.com/datirium/workflows.git
Path: workflows/genome-indices.cwl Branch/Commit ID: e0a30aa1ad516dd2ec0e9ce006428964b840daf4 |
||
EMG pipeline v3.0 (single end version)
|
https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git
Path: workflows/emg-pipeline-v3.cwl Branch/Commit ID: ca6ca613f0d3728d9589a6ca6293e66dfde87bfb |
||
Trim Galore RNA-Seq pipeline single-read strand specific
Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
https://github.com/datirium/workflows.git
Path: workflows/trim-rnaseq-se-dutp.cwl Branch/Commit ID: 9e3c3e65c19873cd1ed3cf7cc3b94ebc75ae0cc5 |
||
THOR - differential peak calling of ChIP-seq signals with replicates
What is THOR? -------------- THOR is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates. THOR performs genomic signal processing, peak calling and p-value calculation in an integrated framework. For more information please refer to: ------------------------------------- Allhoff, M., Sere K., Freitas, J., Zenke, M., Costa, I.G. (2016), Differential Peak Calling of ChIP-seq Signals with Replicates with THOR, Nucleic Acids Research, epub gkw680. |
https://github.com/datirium/workflows.git
Path: workflows/rgt-thor.cwl Branch/Commit ID: 581156366f91861bd4dbb5bcb59f67d468b32af3 |
||
EMG pipeline v4.0 (paired end version)
|
https://github.com/proteinswebteam/ebi-metagenomics-cwl.git
Path: workflows/emg-pipeline-v4-paired.cwl Branch/Commit ID: ecf044f3a5a7589cb2238487a19f22863c2bcdb1 |