Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph EMG pipeline v4.0 (single end version)

https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git

Path: workflows/emg-pipeline-v4-single.cwl

Branch/Commit ID: 7bb76f33bf40b5cd2604001cac46f967a209c47f

workflow graph Single-cell Reference Indices

Single-cell Reference Indices ============================================================= Builds a Cell Ranger and Cell Ranger ARC compatible reference folders from the custom genome FASTA and gene GTF annotation files

https://github.com/Barski-lab/scRNA-Seq-Analysis.git

Path: workflows/sc-ref-indices-wf.cwl

Branch/Commit ID: 280cad66c2a5b2e1b66e4f8a5469942e88df5b74

workflow graph RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se.cwl

Branch/Commit ID: b1a5dabeeeb9079b30b2871edd9c9034a1e00c1c

workflow graph EMG pipeline v3.0 (single end version)

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/emg-pipeline-v3.cwl

Branch/Commit ID: fa86fce570ab91c624272c8ffda672069d2f276d

workflow graph kallisto_scatter_synapse_single_end_workflow.cwl

https://github.com/CRI-iAtlas/iatlas-workflows.git

Path: Kallisto/workflow/kallisto_scatter_synapse_single_end_workflow.cwl

Branch/Commit ID: 3acab4d22ff0f9657dc8c5685799898a2fc2fd25

workflow graph EMG pipeline v3.0 (paired end version)

https://github.com/proteinswebteam/ebi-metagenomics-cwl.git

Path: workflows/emg-pipeline-v3-paired.cwl

Branch/Commit ID: 25129f55226dee595ef941edc24d3c44414e0523

workflow graph samtools_sort

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/subworkflows/samtools_sort.cwl

Branch/Commit ID: 572d9e6b9264d98967b33d18110b0e1979b21d6c

workflow graph RNA-Seq pipeline single-read stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: b1a5dabeeeb9079b30b2871edd9c9034a1e00c1c

workflow graph bam_filtering

BAM filtering

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/subworkflows/bam_filtering.cwl

Branch/Commit ID: 6f16906b30adad5136b0c8135d1e7c07c5741763

workflow graph DESeq2 (LRT) - differential gene expression analysis using likelihood ratio test

Runs DESeq2 using LRT (Likelihood Ratio Test) ============================================= The LRT examines two models for the counts, a full model with a certain number of terms and a reduced model, in which some of the terms of the full model are removed. The test determines if the increased likelihood of the data using the extra terms in the full model is more than expected if those extra terms are truly zero. The LRT is therefore useful for testing multiple terms at once, for example testing 3 or more levels of a factor at once, or all interactions between two variables. The LRT for count data is conceptually similar to an analysis of variance (ANOVA) calculation in linear regression, except that in the case of the Negative Binomial GLM, we use an analysis of deviance (ANODEV), where the deviance captures the difference in likelihood between a full and a reduced model. When one performs a likelihood ratio test, the p values and the test statistic (the stat column) are values for the test that removes all of the variables which are present in the full design and not in the reduced design. This tests the null hypothesis that all the coefficients from these variables and levels of these factors are equal to zero. The likelihood ratio test p values therefore represent a test of all the variables and all the levels of factors which are among these variables. However, the results table only has space for one column of log fold change, so a single variable and a single comparison is shown (among the potentially multiple log fold changes which were tested in the likelihood ratio test). This indicates that the p value is for the likelihood ratio test of all the variables and all the levels, while the log fold change is a single comparison from among those variables and levels. **Technical notes** 1. At least two biological replicates are required for every compared category 2. Metadata file describes relations between compared experiments, for example ``` ,time,condition DH1,day5,WT DH2,day5,KO DH3,day7,WT DH4,day7,KO DH5,day7,KO ``` where `time, condition, day5, day7, WT, KO` should be a single words (without spaces) and `DH1, DH2, DH3, DH4, DH5` correspond to the experiment aliases set in **RNA-Seq experiments** input. 3. Design and reduced formulas should start with **~** and include categories or, optionally, their interactions from the metadata file header. See details in DESeq2 manual [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#interactions) and [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#likelihood-ratio-test) 4. Contrast should be set based on your metadata file header and available categories in a form of `Factor Numerator Denominator`, where `Factor` - column name from metadata file, `Numerator` - category from metadata file to be used as numerator in fold change calculation, `Denominator` - category from metadata file to be used as denominator in fold change calculation. For example `condition WT KO`.

https://github.com/datirium/workflows.git

Path: workflows/deseq-lrt.cwl

Branch/Commit ID: 9850a859de1f42d3d252c50e15701928856fe774