Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph kfdrc_sentieon_gvcf_wf.cwl

https://github.com/kids-first/kf-alignment-workflow.git

Path: workflows/kfdrc_sentieon_gvcf_wf.cwl

Branch/Commit ID: a7e45d17fb56ead5a4c65628689915316341fbde

workflow graph bulk_analysis.cwl

https://github.com/hubmapconsortium/sc-atac-seq-pipeline.git

Path: steps/bulk_analysis.cwl

Branch/Commit ID: d0e845df600fff7944943e2520db7a0cda8d00db

workflow graph tt_blastn_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastn_wnode.cwl

Branch/Commit ID: 68b828ac482956a03325623d817780986f34fb31

workflow graph PGAP Pipeline, simple user input, PGAPX-134

PGAP pipeline for external usage, powered via containers, simple user input: (FASTA + yaml only, no template)

https://github.com/ncbi/pgap.git

Path: pgap.cwl

Branch/Commit ID: 008a090fb1938fbb393494ac8fcb219f0d9f5295

workflow graph env-wf3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/env-wf3.cwl

Branch/Commit ID: 526f36f93655bfb098f766ff020708b5a707513a

workflow graph DESeq - differential gene expression analysis

# Differential gene expression analysis This differential gene expression (DGE) analysis takes as input samples from two experimental conditions that have been processed with an RNA-Seq workflow (see list of \"Upstream workflows\" below). DESeq estimates variance-mean dependence in count data from high-throughput sequencing assays, then tests for DGE based on a model which assumes a negative binomial distribution of gene expression (aligned read count per gene). ### Experimental Setup and Results Interpretation The workflow design uses as its fold change (FC) calculation: condition 1 (c1, e.g. treatment) over condition 2 (c2, e.g. control). In other words: `FC == (c1/c2)` Therefore: - if FC<1 the log2(FC) is <0 (negative), meaning expression in condition1<condition2 (gene is downregulated in c1) - if FC>1 the log2(FC) is >0 (positive), meaning expression in condition1>condition2 (gene is upregulated in c1) In other words, if you have input TREATMENT samples as condition 1, and CONTROL samples as condition 2, a positive L2FC for a gene indicates that expression of the gene in TREATMENT is greater (or upregulated) compared to CONTROL. Next, threshold the p-adjusted values with your FDR (false discovery rate) cutoff to determine if the change may be considered significant or not. It is important to note when DESeq1 or DESeq2 is used in our DGE analysis workflow. If a user inputs only a single sample per condition DESeq1 is used for calculating DGE. In this experimental setup, there are no repeated measurements per gene per condition, therefore biological variability in each condition cannot be captured so the output p-values are assumed to be purely \"technical\". On the other hand, if >1 sample(s) are input per condition DESeq2 is used. In this case, biological variability per gene within each condition is available to be incorporated into the model, and resulting p-values are assumed to be \"biological\". Additionally, DESeq2 fold change is \"shrunk\" to account for sample variability, and as Michael Love (DESeq maintainer) puts it, \"it looks at the largest fold changes that are not due to low counts and uses these to inform a prior distribution. So the large fold changes from genes with lots of statistical information are not shrunk, while the imprecise fold changes are shrunk. This allows you to compare all estimated LFC across experiments, for example, which is not really feasible without the use of a prior\". In either case, the null hypothesis (H0) tested is that there are no significantly differentially expressed genes between conditions, therefore a smaller p-value indicates a lower probability of the H0 occurring by random chance and therefore, below a certain threshold (traditionally <0.05), H0 should be rejected. Additionally, due to the many thousands of independent hypotheses being tested (each gene representing an independent test), the p-values attained by the Wald test are adjusted using the Benjamini and Hochberg method by default. These \"padj\" values should be used for determination of significance (a reasonable value here would be <0.10, i.e. below a 10% FDR). Further Analysis: Output from the DESeq workflow may be used as input to the GSEA (Gene Set Enrichment Analysis) workflow for identifying enriched marker gene sets between conditions. ### DESeq1 High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://www.bioconductor.org/packages/3.8/bioc/html/DESeq.html), as an R/Bioconductor package. ### DESeq2 In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. ### __References__ - Anders S, Huber W (2010). “Differential expression analysis for sequence count data.” Genome Biology, 11, R106. doi: 10.1186/gb-2010-11-10-r106, http://genomebiology.com/2010/11/10/R106/. - Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 822a07cd6937faa4be377b0cac8780f52c817faf

workflow graph sec-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/sec-wf.cwl

Branch/Commit ID: ecdfe1ee769d05790f70ac87a711131f441f3753

workflow graph cache_asnb_entries

https://github.com/ncbi/pgap.git

Path: task_types/tt_cache_asnb_entries.cwl

Branch/Commit ID: 61e3752f1f5e2ee498fa024c235226f8580be942

workflow graph VEPannotationPlusFilters_workflow.cwl

https://github.com/teoloup/cwltools.git

Path: VEPannotationPlusFilters_workflow.cwl

Branch/Commit ID: 2485f0ecf1f7e6cd57e45ef13fddebbc508b77d4

workflow graph mut.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut.cwl

Branch/Commit ID: ecdfe1ee769d05790f70ac87a711131f441f3753