Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Cellranger aggr - aggregates data from multiple Cellranger runs

Devel version of Single-Cell Cell Ranger Aggregate ================================================== Workflow calls \"cellranger aggr\" command to combine output files from \"cellranger count\" (the molecule_info.h5 file from each run) into a single feature-barcode matrix containing all the data. When combining multiple GEM wells, the barcode sequences for each channel are distinguished by a GEM well suffix appended to the barcode sequence. Each GEM well is a physically distinct set of GEM partitions, but draws barcode sequences randomly from the pool of valid barcodes, known as the barcode whitelist. To keep the barcodes unique when aggregating multiple libraries, we append a small integer identifying the GEM well to the barcode nucleotide sequence, and use that nucleotide sequence plus ID as the unique identifier in the feature-barcode matrix. For example, AGACCATTGAGACTTA-1 and AGACCATTGAGACTTA-2 are distinct cell barcodes from different GEM wells, despite having the same barcode nucleotide sequence. This number, which tells us which GEM well this barcode sequence came from, is called the GEM well suffix. The numbering of the GEM wells will reflect the order that the GEM wells were provided in the \"molecule_info_h5\" and \"gem_well_labels\" inputs. When combining data from multiple GEM wells, the \"cellranger aggr\" pipeline automatically equalizes the average read depth per cell between groups before merging. This approach avoids artifacts that may be introduced due to differences in sequencing depth. It is possible to turn off normalization or change the way normalization is done through the \"normalization_mode\" input. The \"none\" value may be appropriate if you want to maximize sensitivity and plan to deal with depth normalization in a downstream step.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-aggr.cwl

Branch/Commit ID: a409db2289b86779897ff19003bd351701a81c50

workflow graph CLIP-Seq pipeline for single-read experiment NNNNG

Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome.

https://github.com/datirium/workflows.git

Path: workflows/clipseq-se.cwl

Branch/Commit ID: 4a5c59829ff8b9f3c843e66e3c675dcd9c689ed5

workflow graph Build Bowtie indices

Workflow runs [Bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) to build indices for reference genome provided in a single FASTA file as fasta_file input. Generated indices are saved in a folder with the name that corresponds to the input genome

https://github.com/datirium/workflows.git

Path: workflows/bowtie-index.cwl

Branch/Commit ID: 4a5c59829ff8b9f3c843e66e3c675dcd9c689ed5

workflow graph QuantSeq 3' mRNA-Seq single-read

### Pipeline for Lexogen's QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina [Lexogen original documentation](https://www.lexogen.com/quantseq-3mrna-sequencing/) * Cost-saving and streamlined globin mRNA depletion during QuantSeq library preparation * Genome-wide analysis of gene expression * Cost-efficient alternative to microarrays and standard RNA-Seq * Down to 100 pg total RNA input * Applicable for low quality and FFPE samples * Single-read sequencing of up to 9,216 samples/lane * Dual indexing and Unique Molecular Identifiers (UMIs) are available ### QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina The QuantSeq FWD Kit is a library preparation protocol designed to generate Illumina compatible libraries of sequences close to the 3’ end of polyadenylated RNA. QuantSeq FWD contains the Illumina Read 1 linker sequence in the second strand synthesis primer, hence NGS reads are generated towards the poly(A) tail, directly reflecting the mRNA sequence (see workflow). This version is the recommended standard for gene expression analysis. Lexogen furthermore provides a high-throughput version with optional dual indexing (i5 and i7 indices) allowing up to 9,216 samples to be multiplexed in one lane. #### Analysis of Low Input and Low Quality Samples The required input amount of total RNA is as low as 100 pg. QuantSeq is suitable to reproducibly generate libraries from low quality RNA, including FFPE samples. See Fig.1 and 2 for a comparison of two different RNA qualities (FFPE and fresh frozen cryo-block) of the same sample. ![Fig 1](https://www.lexogen.com/wp-content/uploads/2017/02/Correlation_Samples.jpg) Figure 1 | Correlation of gene counts of FFPE and cryo samples. ![Fig 2](https://www.lexogen.com/wp-content/uploads/2017/02/Venn_diagrams.jpg) Figure 2 | Venn diagrams of genes detected by QuantSeq at a uniform read depth of 2.5 M reads in FFPE and cryo samples with 1, 5, and 10 reads/gene thresholds. #### Mapping of Transcript End Sites By using longer reads QuantSeq FWD allows to exactly pinpoint the 3’ end of poly(A) RNA (see Fig. 3) and therefore obtain accurate information about the 3’ UTR. ![Figure 3](https://www.lexogen.com/wp-content/uploads/2017/02/Read_Coverage.jpg) Figure 3 | QuantSeq read coverage versus normalized transcript length of NGS libraries derived from FFPE-RNA (blue) and cryo-preserved RNA (red). ### Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Separates UMIes and trims adapters from input FASTQ file 2. Uses ```STAR``` to align reads from input FASTQ file according to the predefined reference indices; generates unsorted BAM file and alignment statistics file 3. Uses ```fastx_quality_stats``` to analyze input FASTQ file and generates quality statistics file 4. Uses ```samtools sort``` and generates coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 2 (after running STAR) 5. Uses ```umi_tools dedup``` and generates final filtered sorted BAM(+BAI) file pair 6. Generates BigWig file on the base of sorted BAM file 7. Maps input FASTQ file to predefined rRNA reference indices using ```bowtie``` to define the level of rRNA contamination; exports resulted statistics to file 8. Calculates isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; exports results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-quantseq-mrnaseq-se.cwl

Branch/Commit ID: 09267e79fd867aa68a219c69e6db7d8e2e877be2

workflow graph GAT - Genomic Association Tester

GAT: Genomic Association Tester ============================================== A common question in genomic analysis is whether two sets of genomic intervals overlap significantly. This question arises, for example, in the interpretation of ChIP-Seq or RNA-Seq data. The Genomic Association Tester (GAT) is a tool for computing the significance of overlap between multiple sets of genomic intervals. GAT estimates significance based on simulation. Gat implemements a sampling algorithm. Given a chromosome (workspace) and segments of interest, for example from a ChIP-Seq experiment, gat creates randomized version of the segments of interest falling into the workspace. These sampled segments are then compared to existing genomic annotations. The sampling method is conceptually simple. Randomized samples of the segments of interest are created in a two-step procedure. Firstly, a segment size is selected from to same size distribution as the original segments of interest. Secondly, a random position is assigned to the segment. The sampling stops when exactly the same number of nucleotides have been sampled. To improve the speed of sampling, segment overlap is not resolved until the very end of the sampling procedure. Conflicts are then resolved by randomly removing and re-sampling segments until a covering set has been achieved. Because the size of randomized segments is derived from the observed segment size distribution of the segments of interest, the actual segment sizes in the sampled segments are usually not exactly identical to the ones in the segments of interest. This is in contrast to a sampling method that permutes segment positions within the workspace.

https://github.com/datirium/workflows.git

Path: workflows/gat-run.cwl

Branch/Commit ID: 4a5c59829ff8b9f3c843e66e3c675dcd9c689ed5

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: a409db2289b86779897ff19003bd351701a81c50

workflow graph DiffBind - Differential Binding Analysis of ChIP-Seq Peak Data

Differential Binding Analysis of ChIP-Seq Peak Data --------------------------------------------------- DiffBind processes ChIP-Seq data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind.cwl

Branch/Commit ID: a839eb6390974089e1a558c49fc07b4c66c50767

workflow graph Trim Galore ATAC-Seq pipeline single-read

This ATAC pipeline is based on original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq single-read data analysis by updating genome coverage step. ### Data Analysis Steps SciDAP starts from the .fastq files which most DNA cores and commercial NGS companies return. Starting from raw data allows us to ensure that all experiments have been processed in the same way and simplifies the deposition of data to GEO upon publication. The data can be uploaded from users computer, downloaded directly from an ftp server of the core facility by providing a URL or from GEO by providing SRA accession number. Our current pipelines include the following steps: 1. Trimming the adapters with TrimGalore. This step is particularly important when the reads are long and the fragments are short as in ATAC -resulting in sequencing adapters at the end of read. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Nexterra/Tn5 adapters. 2. QC 3. (Optional) trimming adapters on 5' or 3' end by the specified number of bases. 4. Mapping reads with BowTie. Only uniquely mapped reads with less than 3 mismatches are used in the downstream analysis. Results are saved as a .bam file. 5. Reads mapping to chromosome M are removed. Since there are many copies of chromosome M in the cell and it is not protected by histones, some ATAC libraries have up to 50% of reads mapping to chrM. We recommend using OMNI-ATAC protocol that reduces chrM reads and provides better specificity. 6. (Optional) Removal of duplicates (reads/pairs of reads mapping to exactly same location). This step is used to remove reads overamplified in PCR. Unfortunately, it may also remove \"good\" reads. We usually do not remove duplicates unless the library is heavily duplicated. Please note that MACS2 will remove 'excessive' duplicates during peak calling ina smart way (those not supported by other nearby reads). 7. Peakcalling by MACS2. (Optionally), it is possible to specify read extension length for MACS2 to use if the length determined automatically is wrong. 8. Generation of BigWig coverage files for display on the browser. Since the cuts by the Tn5 transposome are 9bp apart, we show coverage by 9bp reads rather than fragments as in ChIP-Seq. The coverage shows the number of fragments at each base in the genome normalized to the number of millions of mapped reads. This way the peak of coverage will be located at the most accessible site. ### Details _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-atacseq-se.cwl

Branch/Commit ID: a0b22644ca178b640fb74849d23b7c631022f0b5

workflow graph Trim Galore RNA-Seq pipeline paired-end strand specific

Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe-dutp.cwl

Branch/Commit ID: c9e7f3de7f6ba38ee663bd3f9649e8d7dbac0c86

workflow graph wf-variantcall.cwl

https://github.com/FarahZKhan/bcbio_test_cwlprov.git

Path: somatic/somatic-workflow/wf-variantcall.cwl

Branch/Commit ID: 7c46d5c6ef6501dc0e07a9b740e9de64ffec83f5