Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph EMG pipeline v3.0 (single end version)

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/emg-pipeline-v3.cwl

Branch/Commit ID: 0cd2d70d63a8ceb2de28f0faac19c919a7bd35ff

workflow graph RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: 9e3c3e65c19873cd1ed3cf7cc3b94ebc75ae0cc5

workflow graph Unaligned BAM to BQSR

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_bqsr.cwl

Branch/Commit ID: 39ac49f5d080bbb6bfa97246f46a5b621254f622

workflow graph QuantSeq 3' mRNA-Seq single-read

### Pipeline for Lexogen's QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina [Lexogen original documentation](https://www.lexogen.com/quantseq-3mrna-sequencing/) * Cost-saving and streamlined globin mRNA depletion during QuantSeq library preparation * Genome-wide analysis of gene expression * Cost-efficient alternative to microarrays and standard RNA-Seq * Down to 100 pg total RNA input * Applicable for low quality and FFPE samples * Single-read sequencing of up to 9,216 samples/lane * Dual indexing and Unique Molecular Identifiers (UMIs) are available ### QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina The QuantSeq FWD Kit is a library preparation protocol designed to generate Illumina compatible libraries of sequences close to the 3’ end of polyadenylated RNA. QuantSeq FWD contains the Illumina Read 1 linker sequence in the second strand synthesis primer, hence NGS reads are generated towards the poly(A) tail, directly reflecting the mRNA sequence (see workflow). This version is the recommended standard for gene expression analysis. Lexogen furthermore provides a high-throughput version with optional dual indexing (i5 and i7 indices) allowing up to 9,216 samples to be multiplexed in one lane. #### Analysis of Low Input and Low Quality Samples The required input amount of total RNA is as low as 100 pg. QuantSeq is suitable to reproducibly generate libraries from low quality RNA, including FFPE samples. See Fig.1 and 2 for a comparison of two different RNA qualities (FFPE and fresh frozen cryo-block) of the same sample. ![Fig 1](https://www.lexogen.com/wp-content/uploads/2017/02/Correlation_Samples.jpg) Figure 1 | Correlation of gene counts of FFPE and cryo samples. ![Fig 2](https://www.lexogen.com/wp-content/uploads/2017/02/Venn_diagrams.jpg) Figure 2 | Venn diagrams of genes detected by QuantSeq at a uniform read depth of 2.5 M reads in FFPE and cryo samples with 1, 5, and 10 reads/gene thresholds. #### Mapping of Transcript End Sites By using longer reads QuantSeq FWD allows to exactly pinpoint the 3’ end of poly(A) RNA (see Fig. 3) and therefore obtain accurate information about the 3’ UTR. ![Figure 3](https://www.lexogen.com/wp-content/uploads/2017/02/Read_Coverage.jpg) Figure 3 | QuantSeq read coverage versus normalized transcript length of NGS libraries derived from FFPE-RNA (blue) and cryo-preserved RNA (red). ### Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Separates UMIes and trims adapters from input FASTQ file 2. Uses ```STAR``` to align reads from input FASTQ file according to the predefined reference indices; generates unsorted BAM file and alignment statistics file 3. Uses ```fastx_quality_stats``` to analyze input FASTQ file and generates quality statistics file 4. Uses ```samtools sort``` and generates coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 2 (after running STAR) 5. Uses ```umi_tools dedup``` and generates final filtered sorted BAM(+BAI) file pair 6. Generates BigWig file on the base of sorted BAM file 7. Maps input FASTQ file to predefined rRNA reference indices using ```bowtie``` to define the level of rRNA contamination; exports resulted statistics to file 8. Calculates isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; exports results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-quantseq-mrnaseq-se.cwl

Branch/Commit ID: 4360fb2e778ecee42e5f78f83b78c65ab3a2b1df

workflow graph Running cellranger count and lineage inference

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/single_cell_rnaseq.cwl

Branch/Commit ID: 39ac49f5d080bbb6bfa97246f46a5b621254f622

workflow graph SoupX (workflow) - an R package for the estimation and removal of cell free mRNA contamination

Wrapped in a workflow SoupX tool for easy access to Cell Ranger pipeline compressed outputs.

https://github.com/Barski-lab/workflows.git

Path: tools/soupx-subworkflow.cwl

Branch/Commit ID: 812b0ff40dda18ab7a9a872ff13a577be8531ba6

workflow graph Functional analyis of sequences that match the 16S SSU

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/16S_taxonomic_analysis.cwl

Branch/Commit ID: 930a2cf6fff820c2461b42dd79d71d9379343013

workflow graph chipseq-header.cwl

https://github.com/datirium/workflows.git

Path: metadata/chipseq-header.cwl

Branch/Commit ID: 433c10a6ee9f9b07f1af4141e3df6a584dfe86a1

workflow graph exome alignment with qc, no bqsr, no verify_bam_id

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/exome_alignment_mouse.cwl

Branch/Commit ID: 4bc0a4577d626b65a4b44683e5a1ab2f7d7faf4c

workflow graph Find reads with predicted coding sequences above 60 AA in length

https://github.com/proteinswebteam/ebi-metagenomics-cwl.git

Path: workflows/orf_prediction.cwl

Branch/Commit ID: d4e5e533ee6dc93bfaf1c4bbb2ab40812a8f4792