Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
facets-workflow.cwl
Workflow for running Facets-suite on a set of tumor normal pairs This workflow scatters over all the pairs in the input JSON to run all samples in parallel Input JSON format ----------------- { \"pairs\": [ { \"tumor_bam\": { \"class\": \"File\", \"path\": \"/test_data/bam/Tumor1.rg.md.abra.printreads.bam\" }, \"normal_bam\": { \"class\": \"File\", \"path\": \"/test_data/bam/Normal1.rg.md.abra.printreads.bam\" }, \"pair_maf\": { \"class\": \"File\", \"path\": \"/test_data/bam/Tumor1.Normal1.maf\" }, \"pair_id\": \"Tumor1.Normal1\" }, { \"tumor_bam\": { \"class\": \"File\", \"path\": \"/test_data/bam/Tumor2.rg.md.abra.printreads.bam\" }, \"normal_bam\": { \"class\": \"File\", \"path\": \"/test_data/bam/Normal2.rg.md.abra.printreads.bam\" }, \"pair_maf\": { \"class\": \"File\", \"path\": \"/test_data/bam/Tumor2.Normal2.maf\" }, \"pair_id\": \"Tumor2.Normal2\" } ] } Output format ------------- output └── facets-suite ├── Tumor1.Normal1.arm_level.txt ├── Tumor1.Normal1.gene_level.txt ├── Tumor1.Normal1_hisens.ccf.maf ├── Tumor1.Normal1_hisens.rds ├── Tumor1.Normal1_hisens.seg ├── Tumor1.Normal1_purity.rds ├── Tumor1.Normal1_purity.seg ├── Tumor1.Normal1.qc.txt ├── Tumor1.Normal1.snp_pileup.gz ├── Tumor1.Normal1.txt ├── Tumor2.Normal2.arm_level.txt ├── Tumor2.Normal2.gene_level.txt ├── Tumor2.Normal2_hisens.ccf.maf ├── Tumor2.Normal2_hisens.rds ├── Tumor2.Normal2_hisens.seg ├── Tumor2.Normal2_purity.rds ├── Tumor2.Normal2_purity.seg ├── Tumor2.Normal2.qc.txt ├── Tumor2.Normal2.snp_pileup.gz ├── Tumor2.Normal2.txt └── logs ├── success └── failed |
https://github.com/mskcc/pluto-cwl.git
Path: cwl/facets-workflow.cwl Branch/Commit ID: 5cad957fec135aa55ca8d588372db0557ca1cad5 |
||
Tumor-Only Detect Variants workflow
|
https://github.com/genome/analysis-workflows.git
Path: definitions/pipelines/tumor_only_detect_variants.cwl Branch/Commit ID: 788bdc99c1d5b6ee7c431c3c011eb30d385c1370 |
||
SoupX Estimate
SoupX Estimate ============== |
https://github.com/datirium/workflows.git
Path: workflows/soupx.cwl Branch/Commit ID: c9e7f3de7f6ba38ee663bd3f9649e8d7dbac0c86 |
||
alignment for nonhuman with qc
|
https://github.com/genome/analysis-workflows.git
Path: definitions/pipelines/alignment_wgs_nonhuman.cwl Branch/Commit ID: 1750cd5cc653f058f521b6195e3bec1e7df1a086 |
||
Cell Ranger Aggregate
Cell Ranger Aggregate ===================== |
https://github.com/datirium/workflows.git
Path: workflows/cellranger-aggr.cwl Branch/Commit ID: 60854b5d299df91e135e05d02f4be61f6a310fbc |
||
Subworkflow to allow calling different SV callers which require bam files as inputs
|
https://github.com/genome/analysis-workflows.git
Path: definitions/subworkflows/single_sample_sv_callers.cwl Branch/Commit ID: 479c9b3e3fa32ec9c7cd4073cfbccc675fd254d9 |
||
bwa_mem
|
https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git
Path: structuralvariants/cwl/subworkflows/bwa_mem.cwl Branch/Commit ID: 3f6a871f81f343cf81a345f73ff2eeac70804b8c |
||
Cut-n-Run pipeline paired-end
Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed |
https://github.com/datirium/workflows.git
Path: workflows/trim-chipseq-pe-cut-n-run.cwl Branch/Commit ID: c9e7f3de7f6ba38ee663bd3f9649e8d7dbac0c86 |
||
wgs alignment and germline variant detection
|
https://github.com/genome/analysis-workflows.git
Path: definitions/pipelines/germline_wgs.cwl Branch/Commit ID: 174f3b239018328cec1d821947438b457552724c |
||
Motif Finding with HOMER with target and background regions from peaks
Motif Finding with HOMER with target and background regions from peaks --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/) |
https://github.com/datirium/workflows.git
Path: workflows/homer-motif-analysis-peak.cwl Branch/Commit ID: 4a5c59829ff8b9f3c843e66e3c675dcd9c689ed5 |