Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: 656113dcac0de7cef6cff6c688f61441ee05872a

workflow graph running cellranger mkfastq and count

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cellranger_mkfastq_and_count.cwl

Branch/Commit ID: fbeea265295ae596d5a3ba563e766be0c4fc26e8

workflow graph tt_fscr_calls_pass1

https://github.com/ncbi/pgap.git

Path: task_types/tt_fscr_calls_pass1.cwl

Branch/Commit ID: 656113dcac0de7cef6cff6c688f61441ee05872a

workflow graph Seurat Cluster

Seurat Cluster ============== Runs filtering, integration, and clustering analyses for Cell Ranger Count Gene Expression or Cell Ranger Aggregate experiments.

https://github.com/datirium/workflows.git

Path: workflows/seurat-cluster.cwl

Branch/Commit ID: 480e99a4bb3046e0565113d9dca294e0895d3b0c

workflow graph kmer_seq_entry_extract_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_seq_entry_extract_wnode.cwl

Branch/Commit ID: 5e92165ac2c11608ab2db42fe2d66eabe72dbb40

workflow graph FastQC - a quality control tool for high throughput sequence data

FastQC - a quality control tool for high throughput sequence data ===================================== FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis. The main functions of FastQC are: - Import of data from FastQ files (any variant) - Providing a quick overview to tell you in which areas there may be problems - Summary graphs and tables to quickly assess your data - Export of results to an HTML based permanent report - Offline operation to allow automated generation of reports without running the interactive application

https://github.com/datirium/workflows.git

Path: workflows/fastqc.cwl

Branch/Commit ID: 480e99a4bb3046e0565113d9dca294e0895d3b0c

workflow graph DiffBind - Differential Binding Analysis of ChIP-Seq Peak Data

Differential Binding Analysis of ChIP-Seq Peak Data --------------------------------------------------- DiffBind processes ChIP-Seq data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind.cwl

Branch/Commit ID: 480e99a4bb3046e0565113d9dca294e0895d3b0c

workflow graph tt_hmmsearch_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode.cwl

Branch/Commit ID: 656113dcac0de7cef6cff6c688f61441ee05872a

workflow graph atm-plev.cwl

https://github.com/E3SM-Project/e3sm_to_cmip.git

Path: scripts/cwl_workflows/atm-mon-plev/atm-plev.cwl

Branch/Commit ID: cee5c228f6085b0afd4a4c4696f0c947b1514f50

workflow graph cram_to_bam workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cram_to_bam_and_index.cwl

Branch/Commit ID: fbeea265295ae596d5a3ba563e766be0c4fc26e8