Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph tt_fscr_calls_pass1

https://github.com/ncbi/pgap.git

Path: task_types/tt_fscr_calls_pass1.cwl

Branch/Commit ID: e6fd7898b71a89b667d2eb38f412999920be5902

workflow graph DESeq - differential gene expression analysis

Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22

workflow graph Trim Galore RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: 7518b100d8cbc80c8be32e9e939dfbb27d6b4361

workflow graph Single-Cell Preprocessing Pipeline

Devel version of Single-Cell Preprocessing Pipeline ===================================================

https://github.com/datirium/workflows.git

Path: workflows/single-cell-preprocess.cwl

Branch/Commit ID: 2c486543c335bb99b245dfe7e2f033f535efb9cf

workflow graph FASTQ Vector Removal

This workflow convert fastq to multiple fasta files

https://github.com/ncbi/cwl-ngs-workflows-cbb.git

Path: workflows/File-formats/fastq-to-splitted-fasta.cwl

Branch/Commit ID: b8f18a03ffbd7d5b78a7f220686b81d539686e98

workflow graph minibam_sub_wf.cwl

This is a subworkflow of the main oxog_varbam_annotat_wf workflow - this is not meant to be run as a stand-alone workflow!

https://github.com/svonworl/OxoG-Dockstore-Tools.git

Path: minibam_sub_wf.cwl

Branch/Commit ID: b38a8a4785746b8267913ea5389e21ae6dc921a3

workflow graph zip_and_index_vcf.cwl

This is a very simple workflow of two steps. It will zip an input VCF file and then index it. The zipped file and the index file will be in the workflow output.

https://github.com/svonworl/OxoG-Dockstore-Tools.git

Path: zip_and_index_vcf.cwl

Branch/Commit ID: b38a8a4785746b8267913ea5389e21ae6dc921a3

workflow graph Trim Galore ChIP-Seq pipeline single-read

. This ChIP-Seq pipeline is based on the original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. ### Data Analysis SciDAP starts from the .fastq files which most DNA cores and commercial NGS companies return. Starting from raw data allows us to ensure that all experiments have been processed in the same way and simplifies the deposition of data to GEO upon publication. The data can be uploaded from users computer, downloaded directly from an ftp server of the core facility by providing a URL or from GEO by providing SRA accession number. Our current pipelines include the following steps: 1. Trimming the adapters with TrimGalore. This step is particularly important when the reads are long and the fragments are short-resulting in sequencing adapters at the end of read. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nexterra/Tn5 adapters. 2. QC 3. (Optional) trimming adapters on 5' or 3' end by the specified number of bases. 4. Mapping reads with BowTie. Only uniquely mapped reads with less than 3 mismatches are used in the downstream analysis. Results are saved as a .bam file. 5. (Optional) Removal of duplicates (reads/pairs of reads mapping to exactly same location). This step is used to remove reads overamplified in PCR. Unfortunately, it may also remove \"good\" reads. We usually do not remove duplicates unless the library is heavily duplicated. Please note that MACS2 will remove 'excessive' duplicates during peak calling ina smart way (those not supported by other nearby reads). 6. Peakcalling by MACS2. (Optionally), it is possible to specify read extension length for MACS2 to use if the length determined automatically is wrong. 7. Generation of BigWig coverage files for display on the browser. The coverage shows the number of fragments at each base in the genome normalized to the number of millions of mapped reads. In the case of PE sequencing the fragments are real, but in the case of single reads the fragments are estimated by extending reads to the average fragment length found by MACS2 or specified by the user in 6. ### Details _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: 8a92669a566589d80fde9d151054ffc220ed4ddd

workflow graph chipseq-gen-bigwig.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/chipseq-gen-bigwig.cwl

Branch/Commit ID: 02ffbbd7eb8e06bfb759edea440f78bdc8bb2631

workflow graph js-expr-req-wf.cwl#wf

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/js-expr-req-wf.cwl

Branch/Commit ID: e59538cd9899a88d7e31e0f259bc56734f604383

Packed ID: wf