Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph validate_interleaved_fq.cwl

https://github.com/cancerit/workflow-seq-import.git

Path: cwls/validate_interleaved_fq.cwl

Branch/Commit ID: 0.4.0

workflow graph workflow.cwl

https://github.com/lanl/BEE.git

Path: examples/cat-grep-tar/workflow.cwl

Branch/Commit ID: 17da9ca498f98c0279bc53d25c09210ab256024d

workflow graph step5: The process of updating the GFF format file from identifying TSS (transcription start sites) from CAGE-seq data

\" The process of updating the GFF format file from identifying TSS - transcription start sites - from paired-end CAGE-seq data. This workflow consists of the following files: (1) Tools/06_combined_exec_TSSr.cwl, (2) Tools/07_join_all_assignedClusters.cwl, (3) Tools/08_uniq_tss_feature.cwl, (4) Tools/09_update_gtf.cwl \"

https://github.com/RyoNozu/CWL4IncorporateTSSintoGXF.git

Path: workflow/04_tssr_subworkflow_pe.cwl

Branch/Commit ID: 9728a86f7b73f7657a1f261e77a14ca59bdd561b

workflow graph MAnorm PE - quantitative comparison of ChIP-Seq paired-end data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-pe.cwl

Branch/Commit ID: master

workflow graph pipeline-fastq2vcf-distr.cwl

DNAseq pipeline from fastq to vcf in distributed mode

https://github.com/Sentieon/Sentieon-cwl.git

Path: pipeline/pipeline-fastq2vcf-distr.cwl

Branch/Commit ID: master

workflow graph bacterial_orthology

https://github.com/ncbi/pgap.git

Path: bacterial_orthology/wf_bacterial_orthology.cwl

Branch/Commit ID: 54c5074587af001a44eccb4762a4cb25fa24cb3e

workflow graph cluster_blastp_wnode and gpx_qdump combined

https://github.com/ncbi/pgap.git

Path: task_types/tt_cluster_and_qdump.cwl

Branch/Commit ID: c6e7e18969c761803c38762ad6ee91b0001c52e2

workflow graph Trim Galore ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics for both the input FASTQ files, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with running fastx_quality_stats (steps fastx_quality_stats_upstream and fastx_quality_stats_downstream) from FASTX-Toolkit to calculate quality statistics for both upstream and downstream input FASTQ files. At the same time Bowtie is used to align reads from input FASTQ files to reference genome (Step bowtie_aligner). The output of this step is unsorted SAM file which is being sorted and indexed by samtools sort and samtools index (Step samtools_sort_index). Depending on workflow’s input parameters indexed and sorted BAM file could be processed by samtools rmdup (Step samtools_rmdup) to remove all possible read duplicates. In a case when removing duplicates is not necessary the step returns original input BAM and BAI files without any processing. If the duplicates were removed the following step (Step samtools_sort_index_after_rmdup) reruns samtools sort and samtools index with BAM and BAI files, if not - the step returns original unchanged input files. Right after that macs2 callpeak performs peak calling (Step macs2_callpeak). On the base of returned outputs the next step (Step macs2_island_count) calculates the number of islands and estimated fragment size. If the last one is less that 80 (hardcoded in a workflow) macs2 callpeak is rerun again with forced fixed fragment size value (Step macs2_callpeak_forced). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimated fragment size (Step macs2_island_count_forced) for the data obtained from macs2_callpeak_forced step. If the last one was skipped the results from macs2_island_count_forced step are equal to the ones obtained from macs2_island_count step. Next step (Step macs2_stat) is used to define which of the islands and estimated fragment size should be used in workflow output: either from macs2_island_count step or from macs2_island_count_forced step. If input trigger of this step is set to True it means that macs2_callpeak_forced step was run and it returned different from macs2_callpeak step results, so macs2_stat step should return [fragments_new, fragments_old, islands_new], if trigger is False the step returns [fragments_old, fragments_old, islands_old], where sufix \"old\" defines results obtained from macs2_island_count step and sufix \"new\" - from macs2_island_count_forced step. The following two steps (Step bamtools_stats and bam_to_bigwig) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step get_stat is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step island_intersect assigns genes and regions to the islands obtained from macs2_callpeak_forced. Step average_tag_density is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe.cwl

Branch/Commit ID: 3fc68366adb179927af5528c27b153abaf94494d

workflow graph scatter-wf1.cwl

https://github.com/common-workflow-language/common-workflow-language.git

Path: v1.0/v1.0/scatter-wf1.cwl

Branch/Commit ID: 17695244222b0301b37cb749fe4a8d89622cd1ad

workflow graph completeWorkflow.cwl

https://github.com/h3abionet/h3abionet16S.git

Path: workflows-cwl/completeWorkflow.cwl

Branch/Commit ID: b963681265d9de273a50b5f1ffbb54bf8d1fbdd3