Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph kmer_build_tree

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_build_tree.cwl

Branch/Commit ID: 803f6367d1b279a7b6dc1a4e8ae43f1bbec9f760

workflow graph workflow.cwl

https://gitlab.ebrains.eu/weidler/sc5-cwl-workflow.git

Path: workflow.cwl

Branch/Commit ID: 872880d684193c5e936c76dff3ebf77d2e3e5f59

workflow graph taxonomy_check_16S

https://github.com/ncbi/pgap.git

Path: task_types/tt_taxonomy_check_16S.cwl

Branch/Commit ID: 17bae57a1f00f5c6db8f3a82d86262f12b8153cf

workflow graph revsort.cwl

Reverse the lines in a document, then sort those lines.

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/revsort.cwl

Branch/Commit ID: 047e69bb169e79fad6a7285ee798c4ecec3b218b

workflow graph Bismark Methylation - pipeline for BS-Seq data analysis

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: 44214a9d02e6d85b03eb708552ed812ae3d4a733

workflow graph make_final_outputs_workflow.cwl

https://github.com/NCI-GDC/gdc-rnaseq-cwl.git

Path: workflows/subworkflows/rnaseq_processing/make_final_outputs_workflow.cwl

Branch/Commit ID: 490ff7f2595262eb883b5804462afaf70e7bc2e1

workflow graph allele-process-strain.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/allele-process-strain.cwl

Branch/Commit ID: 2768d117212e50859edebea74b0641dfaf4feba4

workflow graph RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se.cwl

Branch/Commit ID: 4ab9399a4777610a579ea2c259b9356f27641dcc

workflow graph Merge, annotate, and generate a TSV for SVs

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/merge_svs.cwl

Branch/Commit ID: ffd73951157c61c1581d346628d75b61cdd04141

workflow graph fail-unconnected.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/fail-unconnected.cwl

Branch/Commit ID: a5073143db4155e05df8d2e7eb59d9e62acd65a5