Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Create Genomic Collection for Bacterial Pipeline, ASN.1 input

https://github.com/ncbi/pgap.git

Path: genomic_source/wf_genomic_source_asn.cwl

Branch/Commit ID: f5d70f3ad365a2c017fab1c9654c88bc1caf41aa

workflow graph GSEApy - Gene Set Enrichment Analysis in Python

GSEAPY: Gene Set Enrichment Analysis in Python ============================================== Gene Set Enrichment Analysis is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). GSEA requires as input an expression dataset, which contains expression profiles for multiple samples. While the software supports multiple input file formats for these datasets, the tab-delimited GCT format is the most common. The first column of the GCT file contains feature identifiers (gene ids or symbols in the case of data derived from RNA-Seq experiments). The second column contains a description of the feature; this column is ignored by GSEA and may be filled with “NA”s. Subsequent columns contain the expression values for each feature, with one sample's expression value per column. It is important to note that there are no hard and fast rules regarding how a GCT file's expression values are derived. The important point is that they are comparable to one another across features within a sample and comparable to one another across samples. Tools such as DESeq2 can be made to produce properly normalized data (normalized counts) which are compatible with GSEA.

https://github.com/datirium/workflows.git

Path: workflows/gseapy.cwl

Branch/Commit ID: d1bef74924efcb8bfaa00987b3f148d5a192b7a9

workflow graph workflow.cwl

https://github.com/NAL-i5K/Organism_Onboarding.git

Path: flow_dispatch/2working_files/workflow.cwl

Branch/Commit ID: 58b23bf2d10154a5f2296df8fce496de4cecffef

workflow graph Merge, annotate, and generate a TSV for SVs

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/merge_svs.cwl

Branch/Commit ID: eb0092603bf57acb7bda08a06e4f2f1e2a8c9b6d

workflow graph trnascan_wnode and gpx_qdump combined

https://github.com/ncbi/pgap.git

Path: bacterial_trna/wf_scan_and_dump.cwl

Branch/Commit ID: f5d70f3ad365a2c017fab1c9654c88bc1caf41aa

workflow graph scatter-valuefrom-wf1.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf1.cwl

Branch/Commit ID: 520acbfb82455c4bdabd5f2ea24842804e1c9f58

workflow graph process VCF workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/strelka_process_vcf.cwl

Branch/Commit ID: 54846feabbf008c1946db2a86d87252e0edd95b0

workflow graph PGAP Pipeline

PGAP pipeline for external usage, powered via containers

https://github.com/ncbi/pgap.git

Path: wf_common.cwl

Branch/Commit ID: f5d70f3ad365a2c017fab1c9654c88bc1caf41aa

workflow graph Prepare user input

Prepare user input for NCBI-PGAP pipeline

https://github.com/ncbi/pgap.git

Path: prepare_user_input2.cwl

Branch/Commit ID: 2229f26ec424f9ebeb3db7fec3bd3f84a38c7485

workflow graph PGAP Pipeline, simple user input, PGAPX-134

PGAP pipeline for external usage, powered via containers, simple user input: (FASTA + yaml only, no template)

https://github.com/ncbi/pgap.git

Path: pgap.cwl

Branch/Commit ID: f5d70f3ad365a2c017fab1c9654c88bc1caf41aa