Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore ATAC-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq single-read data analysis by updating genome coverage step. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-atacseq-se.cwl

Branch/Commit ID: d6f58c383d0676269afb519399061191a1144a6a

workflow graph ST520101.cwl

https://github.com/Marco-Salvi/dtc51.git

Path: ST520101.cwl

Branch/Commit ID: main

workflow graph PGAP Pipeline

PGAP pipeline for external usage, powered via containers

https://github.com/ncbi/pgap.git

Path: wf_common.cwl

Branch/Commit ID: dev

workflow graph A workflow that aligns a fasta file and provides statistics on the SAM file

A workflow that aligns a fasta file and provides statistics on the SAM file

https://github.com/svonworl/multi-step-cwl.git

Path: version_1_2/sub_workflow_align_and_metrics.cwl

Branch/Commit ID: develop

workflow graph DESeq - differential gene expression analysis for spike-in normalized RNA-Seq

# Differential gene expression analysis This differential gene expression (DGE) analysis takes as input samples from two experimental conditions that have been processed with a spike-in normalized RNA-Seq workflow (see list of \"Upstream workflows\" at top of file). The size factor estimation and application for normalization is disabled in this version of the DESeq workflow, otherwise all other aspects are the same. DESeq estimates variance-mean dependence in count data from high-throughput sequencing assays, then tests for DGE based on a model which assumes a negative binomial distribution of gene expression (aligned read count per gene). ### Experimental Setup and Results Interpretation The workflow design uses as its fold change (FC) calculation: condition 1 (c1, e.g. treatment) over condition 2 (c2, e.g. control). In other words: `FC == (c1/c2)` Therefore: - if FC<1 the log2(FC) is <0 (negative), meaning expression in condition1<condition2 (gene is downregulated in c1) - if FC>1 the log2(FC) is >0 (positive), meaning expression in condition1>condition2 (gene is upregulated in c1) In other words, if you have input TREATMENT samples as condition 1, and CONTROL samples as condition 2, a positive L2FC for a gene indicates that expression of the gene in TREATMENT is greater (or upregulated) compared to CONTROL. Next, threshold the p-adjusted values with your FDR (false discovery rate) cutoff to determine if the change may be considered significant or not. It is important to note when DESeq1 or DESeq2 is used in our DGE analysis workflow. If a user inputs only a single sample per condition DESeq1 is used for calculating DGE. In this experimental setup, there are no repeated measurements per gene per condition, therefore biological variability in each condition cannot be captured so the output p-values are assumed to be purely \"technical\". On the other hand, if >1 sample(s) are input per condition DESeq2 is used. In this case, biological variability per gene within each condition is available to be incorporated into the model, and resulting p-values are assumed to be \"biological\". Additionally, DESeq2 fold change is \"shrunk\" to account for sample variability, and as Michael Love (DESeq maintainer) puts it, \"it looks at the largest fold changes that are not due to low counts and uses these to inform a prior distribution. So the large fold changes from genes with lots of statistical information are not shrunk, while the imprecise fold changes are shrunk. This allows you to compare all estimated LFC across experiments, for example, which is not really feasible without the use of a prior\". In either case, the null hypothesis (H0) tested is that there are no significantly differentially expressed genes between conditions, therefore a smaller p-value indicates a lower probability of the H0 occurring by random chance and therefore, below a certain threshold (traditionally <0.05), H0 should be rejected. Additionally, due to the many thousands of independent hypotheses being tested (each gene representing an independent test), the p-values attained by the Wald test are adjusted using the Benjamini and Hochberg method by default. These \"padj\" values should be used for determination of significance (a reasonable value here would be <0.10, i.e. below a 10% FDR). Further Analysis: Output from the DESeq workflow may be used as input to the GSEA (Gene Set Enrichment Analysis) workflow for identifying enriched marker gene sets between conditions. ### DESeq1 High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://www.bioconductor.org/packages/3.8/bioc/html/DESeq.html), as an R/Bioconductor package. ### DESeq2 In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. ### __References__ - Anders S, Huber W (2010). “Differential expression analysis for sequence count data.” Genome Biology, 11, R106. doi: 10.1186/gb-2010-11-10-r106, http://genomebiology.com/2010/11/10/R106/. - Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.

https://github.com/datirium/workflows.git

Path: workflows/deseq-for-spikein.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph functional analysis prediction with InterProScan

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/functional_analysis.cwl

Branch/Commit ID: 135976d

workflow graph wf_gen_paleocar_model3.cwl

https://github.com/idaks/cwl_modeling.git

Path: yw_cwl_modeling/gen_paleocar_models/wf_gen_paleocar_model3.cwl

Branch/Commit ID: master

workflow graph RNASelector as a CWL workflow

https://doi.org/10.1007/s12275-011-1213-z

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/rna-selector.cwl

Branch/Commit ID: 71d9c83

workflow graph hmmsearch_wnode and gpx_qdump combined workflow to apply scatter/gather

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode_plus_qdump.cwl

Branch/Commit ID: dev

workflow graph delay-calibration.cwl

https://github.com/lonbar/VLBI-cwl.git

Path: workflows/delay-calibration.cwl

Branch/Commit ID: master