Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Runs InterProScan on batches of sequences to retrieve functional annotations.

https://github.com/EBI-Metagenomics/workflow-is-cwl.git

Path: workflows/InterProScan-v5-chunked-wf.cwl

Branch/Commit ID: 72f702591368397f56d455128f60916902104dd2

workflow graph Generate genome indices for STAR & bowtie

Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files

https://github.com/datirium/workflows.git

Path: workflows/genome-indices.cwl

Branch/Commit ID: 44214a9d02e6d85b03eb708552ed812ae3d4a733

workflow graph downsample unaligned BAM and align

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/downsampled_alignment.cwl

Branch/Commit ID: ae75b938e6e8ae777a55686bbacad824b3c6788c

workflow graph oxog_sub_wf.cwl

This is a subworkflow of the main oxog_varbam_annotat_wf workflow - this is not meant to be run as a stand-alone workflow!

https://github.com/david4096/oxog-dockstore-tools.git

Path: oxog_sub_wf.cwl

Branch/Commit ID: 6366ed398da10019b6d81a789291af6d909f28f4

workflow graph taxonomy_check_16S

https://github.com/ncbi/pgap.git

Path: task_types/tt_taxonomy_check_16S.cwl

Branch/Commit ID: f5d70f3ad365a2c017fab1c9654c88bc1caf41aa

workflow graph gathered exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_gathered.cwl

Branch/Commit ID: 061d3a2fbcd8a1c39c0b38c549e528deb24a9d54

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: d1bef74924efcb8bfaa00987b3f148d5a192b7a9

workflow graph Motif Finding with HOMER with target and background regions from peaks

Motif Finding with HOMER with target and background regions from peaks --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis-peak.cwl

Branch/Commit ID: a1f6ca50fcb0881781b3ba0306dd61ebf555eaba

workflow graph group-isoforms-batch.cwl

Workflow runs group-isoforms.cwl tool using scatter for isoforms_file input. genes_filename and common_tss_filename inputs are ignored.

https://github.com/datirium/workflows.git

Path: tools/group-isoforms-batch.cwl

Branch/Commit ID: 4a5c59829ff8b9f3c843e66e3c675dcd9c689ed5

workflow graph assm_assm_blastn_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_assm_assm_blastn_wnode.cwl

Branch/Commit ID: a34f47d1e37af51e387ecdfa5c3047f106c1146b