Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Motif Finding with HOMER with target and background regions from peaks

Motif Finding with HOMER with target and background regions from peaks --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis-peak.cwl

Branch/Commit ID: 12e5256de1b680c551c87fd5db6f3bc65428af67

workflow graph umi molecular alignment workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/molecular_alignment.cwl

Branch/Commit ID: 641bdeffd942f5121e19626a094c8633386ad546

workflow graph Tumor-Only Detect Variants workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/tumor_only_detect_variants.cwl

Branch/Commit ID: 641bdeffd942f5121e19626a094c8633386ad546

workflow graph bgzip and index VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bgzip_and_index.cwl

Branch/Commit ID: 5677d6df78453e62d2e78ab485f216feaef91681

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: 282762f8bbaea57dd488115745ef798e128bade1

workflow graph count-lines1-wf-noET.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/count-lines1-wf-noET.cwl

Branch/Commit ID: b1d4a69df86350059bd49aa127c02be0c349f7de

workflow graph Single-cell Manual Cell Type Assignment

Single-cell Manual Cell Type Assignment Assigns cell types for clusters based on the provided metadata file.

https://github.com/datirium/workflows.git

Path: workflows/sc-ctype-assign.cwl

Branch/Commit ID: 12e5256de1b680c551c87fd5db6f3bc65428af67

workflow graph miRNA-Seq miRDeep2 pipeline

A CWL workflow for discovering known or novel miRNAs from deep sequencing data using the miRDeep2 tool. The ExoCarta exosome database is also used for identifying exosome-related miRNAs, and TargetScan's organism-specific databases are used for identifying miRNA gene targets. ## __Outputs__ #### Primary Output files: - mirs_known.tsv, detected known mature miRNAs, \"Known miRNAs\" tab - mirs_novel.tsv, detected novel mature miRNAs, \"Novel miRNAs\" tab #### Secondary Output files: - mirs_known_exocarta_deepmirs.tsv, list of detected miRNA also in ExoCarta's exosome database, \"Detected Exosome miRNAs\" tab - mirs_known_gene_targets.tsv, pre-computed gene targets of known mature mirs, downloadable - known_mirs_mature.fa, known mature mir sequences, downloadable - known_mirs_precursor.fa, known precursor mir sequences, downloadable - novel_mirs_mature.fa, novel mature mir sequences, downloadable - novel_mirs_precursor.fa, novel precursor mir sequences, downloadable #### Reports: - overview.md (input list, alignment & mir metrics), \"Overview\" tab - mirdeep2_result.html, summary of mirdeep2 results, \"miRDeep2 Results\" tab ## __Inputs__ #### General Info - Sample short name/Alias: unique name for sample - Experimental condition: condition, variable, etc name (e.g. \"control\" or \"20C 60min\") - Cells: name of cells used for the sample - Catalog No.: vender catalog number if available - Bowtie2 index: Bowtie2 index directory of the reference genome. - Reference Genome FASTA: Reference genome FASTA file to be used for alignment. - Genome short name: Name used for setting organism name, genus, species, and tax ID. - Input FASTQ file: FASTQ file from a single-end miRNA sequencing run. #### Advanced - Adapter: Adapter sequence to be trimmed from miRNA sequence reads. (Default: TCGTAT) - Threads: Number of threads to use for steps that support multithreading (Default: 4). ## Hints & Tips: #### For the identification of novel miRNA candidates, the following may be used as a filtering guideline: 1. miRDeep score > 4 (some authors use 1) 2. not present a match with rfam 3. should present a significant RNAfold (\"yes\") 4. a number of mature reads > 10 5. if applicable, novel mir must be expressed in multiple samples #### For filtering mirbase by organism. | genome | organism | division | name | tree | NCBI-taxid | | ---- | --- | --- | ----------- | ----------- | ----------- | | hg19 | hsa | HSA | Homo sapiens | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Primates;Hominidae | 9606 | | hg38 | hsa | HSA | Homo sapiens | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Primates;Hominidae | 9606 | | mm10 | mmu | MMU | Mus musculus | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Rodentia | 10090 | | rn7 | rno | RNO | Rattus norvegicus | Metazoa;Bilateria;Deuterostoma;Chordata;Vertebrata;Mammalia;Rodentia | 10116 | | dm3 | dme | DME | Drosophila melanogaster | Metazoa;Bilateria;Ecdysozoa;Arthropoda;Hexapoda | 7227 | ## __Data Analysis Steps__ 1. The miRDeep2 Mapper module processes Illumina FASTQ output and maps it to the reference genome. 2. The miRDeep2 miRDeep2 module identifies known and novel (mature and precursor) miRNAs. 3. The ExoCarta database of miRNA found in exosomes is then used to find overlap between mirs_known.tsv and exosome associated miRNAs. 4. Finally, TargetScan organism-specific miRNA gene target database is used to find overlap between mirs_known.tsv and gene targets. ## __References__ 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245920 2. https://github.com/rajewsky-lab/mirdeep2 3. https://biocontainers.pro/tools/mirdeep2 4. https://www.mirbase.org/ 5. http://exocarta.org/index.html 6. https://www.targetscan.org/vert_80/

https://github.com/datirium/workflows.git

Path: workflows/mirna-mirdeep2-se.cwl

Branch/Commit ID: 12e5256de1b680c551c87fd5db6f3bc65428af67

workflow graph Feature expression merge - combines feature expression from several experiments

Feature expression merge - combines feature expression from several experiments ========================================================================= Workflows merges RPKM (by default) gene expression from several experiments based on the values from GeneId, Chrom, TxStart, TxEnd and Strand columns (by default). Reported unique columns are renamed based on the experiments names.

https://github.com/datirium/workflows.git

Path: workflows/feature-merge.cwl

Branch/Commit ID: a8eaf61c809d76f55780b14f2febeb363cf6373f

workflow graph exome alignment and somatic variant detection for cle purpose

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_cle.cwl

Branch/Commit ID: dc2c019c1aa24cc01b451a0f048cf94a35f163c4