Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph count-lines8-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines8-wf.cwl

Branch/Commit ID: 7bfd77118cdc80dd7150115dd7a1a7ee6046f6fe

workflow graph step-valuefrom3-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom3-wf.cwl

Branch/Commit ID: 280a852e74aec08cf79687e8004e17b1ab464534

workflow graph align_merge_sas

https://github.com/ncbi/pgap.git

Path: task_types/tt_align_merge_sas.cwl

Branch/Commit ID: b0ee40d34d233f1611c2e2c66b6d22a3b7deec05

workflow graph count-lines9-wf-noET.cwl

https://github.com/common-workflow-language/common-workflow-language.git

Path: v1.0/v1.0/count-lines9-wf-noET.cwl

Branch/Commit ID: 1f501e38ff692a408e16b246ac7d64d32f0822c2

workflow graph basename-fields-test.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/basename-fields-test.cwl

Branch/Commit ID: fec7a10466a26e376b14181a88734983cfb1b8cb

workflow graph Trim Galore ATAC-Seq pipeline single-read

This ATAC pipeline is based on original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq single-read data analysis by updating genome coverage step. ### Data Analysis Steps SciDAP starts from the .fastq files which most DNA cores and commercial NGS companies return. Starting from raw data allows us to ensure that all experiments have been processed in the same way and simplifies the deposition of data to GEO upon publication. The data can be uploaded from users computer, downloaded directly from an ftp server of the core facility by providing a URL or from GEO by providing SRA accession number. Our current pipelines include the following steps: 1. Trimming the adapters with TrimGalore. This step is particularly important when the reads are long and the fragments are short as in ATAC -resulting in sequencing adapters at the end of read. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Nexterra/Tn5 adapters. 2. QC 3. (Optional) trimming adapters on 5' or 3' end by the specified number of bases. 4. Mapping reads with BowTie. Only uniquely mapped reads with less than 3 mismatches are used in the downstream analysis. Results are saved as a .bam file. 5. Reads mapping to chromosome M are removed. Since there are many copies of chromosome M in the cell and it is not protected by histones, some ATAC libraries have up to 50% of reads mapping to chrM. We recommend using OMNI-ATAC protocol that reduces chrM reads and provides better specificity. 6. (Optional) Removal of duplicates (reads/pairs of reads mapping to exactly same location). This step is used to remove reads overamplified in PCR. Unfortunately, it may also remove \"good\" reads. We usually do not remove duplicates unless the library is heavily duplicated. Please note that MACS2 will remove 'excessive' duplicates during peak calling ina smart way (those not supported by other nearby reads). 7. Peakcalling by MACS2. (Optionally), it is possible to specify read extension length for MACS2 to use if the length determined automatically is wrong. 8. Generation of BigWig coverage files for display on the browser. Since the cuts by the Tn5 transposome are 9bp apart, we show coverage by 9bp reads rather than fragments as in ChIP-Seq. The coverage shows the number of fragments at each base in the genome normalized to the number of millions of mapped reads. This way the peak of coverage will be located at the most accessible site. ### Details _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-atacseq-se.cwl

Branch/Commit ID: e0a30aa1ad516dd2ec0e9ce006428964b840daf4

workflow graph screen out taxa

Remove sequences which align against a reference set using bowtie2. The references are preformatted (index files)

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/organism-screening.workflow.cwl

Branch/Commit ID: 4e4d2e674bde612f98f2b0370445f8b2a47587df

workflow graph timelimit3-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/timelimit3-wf.cwl

Branch/Commit ID: 5f27e234b4ca88ed1280dedf9e3391a01de12912

workflow graph fail-unconnected.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/fail-unconnected.cwl

Branch/Commit ID: 86c46cb397de029e4c91f02cca40fa2b54d22f37

workflow graph js-expr-req-wf.cwl#wf

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/js-expr-req-wf.cwl

Branch/Commit ID: cf9d7cdefa6dfb3b678636da02bc55b6108c04ac

Packed ID: wf