Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Genome conversion and annotation

Workflow for genome annotation from EMBL format

https://git.wageningenur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_sapp_microbes.cwl

Branch/Commit ID: d6893a25b58b9b25fb76c5e060974b54d9eabc41

workflow graph wf-alignment.cwl

https://github.com/bcbio/bcbio_validation_workflows.git

Path: wes-agha-test/wes_chr21_test-workflow-gcp/wf-alignment.cwl

Branch/Commit ID: af9a5621efcb44c249697d6df071fe4defe389ac

workflow graph mut.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut.cwl

Branch/Commit ID: 5c7799a145595323d0a8628be1fe0e24985e793a

workflow graph THOR - differential peak calling of ChIP-seq signals with replicates

What is THOR? -------------- THOR is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates. THOR performs genomic signal processing, peak calling and p-value calculation in an integrated framework. For more information please refer to: ------------------------------------- Allhoff, M., Sere K., Freitas, J., Zenke, M., Costa, I.G. (2016), Differential Peak Calling of ChIP-seq Signals with Replicates with THOR, Nucleic Acids Research, epub gkw680.

https://github.com/datirium/workflows.git

Path: workflows/rgt-thor.cwl

Branch/Commit ID: e99e80a2c19682d59947bde04a892d7b6d90091c

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 1131f82a53315cca217a6c84b3bd272aa62e4bca

workflow graph io-file-default-wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/io-file-default-wf.cwl

Branch/Commit ID: b1d4a69df86350059bd49aa127c02be0c349f7de

workflow graph Hello World

Outputs a message using echo

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/hello-workflow.cwl

Branch/Commit ID: efd59864c24d97e6d0d1d273025d3ef9003fa44d

workflow graph mut.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut.cwl

Branch/Commit ID: 12993a6eb60f5ccb4edbe77cb6de661cfc496090

workflow graph ROSE: rank ordering of super-enhancers

Super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Use to create stitched enhancers, and to separate super-enhancers from typical enhancers using sequencing data (.bam) given a file of previously identified constituent enhancers (.gff)

https://github.com/datirium/workflows.git

Path: workflows/super-enhancer.cwl

Branch/Commit ID: 1131f82a53315cca217a6c84b3bd272aa62e4bca

workflow graph Generate genome indices for STAR & bowtie

Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files

https://github.com/datirium/workflows.git

Path: workflows/genome-indices.cwl

Branch/Commit ID: 10ce6e113f749c7bd725e426445220c3bdc5ddf1