Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore RNA-Seq pipeline paired-end strand specific

Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe-dutp.cwl

Branch/Commit ID: e45ab1b9ac5c9b99fdf7b3b1be396dc42c2c9620

workflow graph scatter-wf4.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-wf4.cwl

Branch/Commit ID: fec7a10466a26e376b14181a88734983cfb1b8cb

Packed ID: main

workflow graph step-valuefrom2-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom2-wf.cwl

Branch/Commit ID: 7bfd77118cdc80dd7150115dd7a1a7ee6046f6fe

workflow graph Motif Finding with HOMER with custom background regions

Motif Finding with HOMER with custom background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis-bg.cwl

Branch/Commit ID: 92f1a6da9c4f85fb51340b01b32373a50fde0891

workflow graph io-int-default-tool-and-wf.cwl

https://github.com/common-workflow-language/common-workflow-language.git

Path: v1.0/v1.0/io-int-default-tool-and-wf.cwl

Branch/Commit ID: a5ae5ad0c9017ed625fb372f65e72dbb069439b0

workflow graph echo-wf-default.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/echo-wf-default.cwl

Branch/Commit ID: 7bfd77118cdc80dd7150115dd7a1a7ee6046f6fe

workflow graph AltAnalyze ICGS

AltAnalyze ICGS ===============

https://github.com/datirium/workflows.git

Path: workflows/altanalyze-icgs.cwl

Branch/Commit ID: 2005c6b7f1bff6247d015ff6c116bd9ec97158bb

workflow graph conflict-wf.cwl#collision

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/conflict-wf.cwl

Branch/Commit ID: 50251ef931d108c09bed2d330d3d4fe9c562b1c3

Packed ID: collision

workflow graph count-lines12-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines12-wf.cwl

Branch/Commit ID: a0f2d38e37ff51721fdeaf993bb2ab474b17246b

workflow graph GSEApy - Gene Set Enrichment Analysis in Python

GSEAPY: Gene Set Enrichment Analysis in Python ============================================== Gene Set Enrichment Analysis is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). GSEA requires as input an expression dataset, which contains expression profiles for multiple samples. While the software supports multiple input file formats for these datasets, the tab-delimited GCT format is the most common. The first column of the GCT file contains feature identifiers (gene ids or symbols in the case of data derived from RNA-Seq experiments). The second column contains a description of the feature; this column is ignored by GSEA and may be filled with “NA”s. Subsequent columns contain the expression values for each feature, with one sample's expression value per column. It is important to note that there are no hard and fast rules regarding how a GCT file's expression values are derived. The important point is that they are comparable to one another across features within a sample and comparable to one another across samples. Tools such as DESeq2 can be made to produce properly normalized data (normalized counts) which are compatible with GSEA.

https://github.com/datirium/workflows.git

Path: workflows/gseapy.cwl

Branch/Commit ID: 10ce6e113f749c7bd725e426445220c3bdc5ddf1