Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph RNA-Seq pipeline paired-end stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389

workflow graph Trim Galore RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: 954bb2f213d97dfef1cddaf9e830169a92ad0c6b

workflow graph Salmon quantification, FASTQ -> H5AD count matrix

https://github.com/hubmapconsortium/salmon-rnaseq.git

Path: steps/salmon-quantification.cwl

Branch/Commit ID: d18fd4992c69eadfad82186d1e16a07092477552

workflow graph 1st-workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/1st-workflow.cwl

Branch/Commit ID: 37c6c78693a4b1e644db951ea964259734a50c6f

workflow graph schemadef-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/schemadef-wf.cwl

Branch/Commit ID: 047e69bb169e79fad6a7285ee798c4ecec3b218b

workflow graph bulk_process.cwl

https://github.com/hubmapconsortium/sc-atac-seq-pipeline.git

Path: steps/bulk_process.cwl

Branch/Commit ID: 53415520f94ac0d9a1fae89af0f6e8250240723a

workflow graph Indices builder from GBOL RDF (TTL)

Workflow to build different indices for different tools from a genome and transcriptome. This workflow expects an (annotated) genome in GBOL ttl format. Steps: - SAPP: rdf2gtf (genome fasta) - SAPP: rdf2fasta (transcripts fasta) - STAR index (Optional for Eukaryotic origin) - bowtie2 index - kallisto index

https://git.wageningenur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_indexbuilder.cwl

Branch/Commit ID: b9097b82e6ab6f2c9496013ce4dd6877092956a0

workflow graph workflow.cwl

https://github.com/NAL-i5K/Organism_Onboarding.git

Path: flow_dispatch/2blat/workflow.cwl

Branch/Commit ID: 5910b4d88aca172252d9102ddb610a7dc9e1347f

workflow graph RNA-Seq pipeline single-read stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: 954bb2f213d97dfef1cddaf9e830169a92ad0c6b

workflow graph standard_bam_to_collapsed_qc.cwl

This is a workflow to go from standard bams to collapsed bams and QC results.

https://github.com/mskcc/Innovation-Pipeline.git

Path: workflows/subworkflows/standard_bam_to_collapsed_qc.cwl

Branch/Commit ID: b0f226a9ac5152f3afe0d38c8cd54aa25b8b01cf