Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: 48a3ceffd49518ef50dbca0396223bf9b945f57f

workflow graph QuantSeq 3' mRNA-Seq single-read

### Pipeline for Lexogen's QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina [Lexogen original documentation](https://www.lexogen.com/quantseq-3mrna-sequencing/) * Cost-saving and streamlined globin mRNA depletion during QuantSeq library preparation * Genome-wide analysis of gene expression * Cost-efficient alternative to microarrays and standard RNA-Seq * Down to 100 pg total RNA input * Applicable for low quality and FFPE samples * Single-read sequencing of up to 9,216 samples/lane * Dual indexing and Unique Molecular Identifiers (UMIs) are available ### QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina The QuantSeq FWD Kit is a library preparation protocol designed to generate Illumina compatible libraries of sequences close to the 3’ end of polyadenylated RNA. QuantSeq FWD contains the Illumina Read 1 linker sequence in the second strand synthesis primer, hence NGS reads are generated towards the poly(A) tail, directly reflecting the mRNA sequence (see workflow). This version is the recommended standard for gene expression analysis. Lexogen furthermore provides a high-throughput version with optional dual indexing (i5 and i7 indices) allowing up to 9,216 samples to be multiplexed in one lane. #### Analysis of Low Input and Low Quality Samples The required input amount of total RNA is as low as 100 pg. QuantSeq is suitable to reproducibly generate libraries from low quality RNA, including FFPE samples. See Fig.1 and 2 for a comparison of two different RNA qualities (FFPE and fresh frozen cryo-block) of the same sample. ![Fig 1](https://www.lexogen.com/wp-content/uploads/2017/02/Correlation_Samples.jpg) Figure 1 | Correlation of gene counts of FFPE and cryo samples. ![Fig 2](https://www.lexogen.com/wp-content/uploads/2017/02/Venn_diagrams.jpg) Figure 2 | Venn diagrams of genes detected by QuantSeq at a uniform read depth of 2.5 M reads in FFPE and cryo samples with 1, 5, and 10 reads/gene thresholds. #### Mapping of Transcript End Sites By using longer reads QuantSeq FWD allows to exactly pinpoint the 3’ end of poly(A) RNA (see Fig. 3) and therefore obtain accurate information about the 3’ UTR. ![Figure 3](https://www.lexogen.com/wp-content/uploads/2017/02/Read_Coverage.jpg) Figure 3 | QuantSeq read coverage versus normalized transcript length of NGS libraries derived from FFPE-RNA (blue) and cryo-preserved RNA (red). ### Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Separates UMIes and trims adapters from input FASTQ file 2. Uses ```STAR``` to align reads from input FASTQ file according to the predefined reference indices; generates unsorted BAM file and alignment statistics file 3. Uses ```fastx_quality_stats``` to analyze input FASTQ file and generates quality statistics file 4. Uses ```samtools sort``` and generates coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 2 (after running STAR) 5. Uses ```umi_tools dedup``` and generates final filtered sorted BAM(+BAI) file pair 6. Generates BigWig file on the base of sorted BAM file 7. Maps input FASTQ file to predefined rRNA reference indices using ```bowtie``` to define the level of rRNA contamination; exports resulted statistics to file 8. Calculates isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; exports results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-quantseq-mrnaseq-se.cwl

Branch/Commit ID: 48a3ceffd49518ef50dbca0396223bf9b945f57f

workflow graph gdc_main_annotation_workflow.cwl

https://github.com/NCI-GDC/vep-cwl.git

Path: v102/workflows/subworkflows/gdc_main_annotation_workflow.cwl

Branch/Commit ID: e553a62ddb1f8e9feb0f3d4ee2bb02ffeef6ce02

workflow graph Apply filters to VCF file

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/filter_vcf.cwl

Branch/Commit ID: 8da2b1cd6fa379b2c22baf9dad762d39630e6f46

workflow graph count-lines11-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines11-wf.cwl

Branch/Commit ID: b60a42e3cc417c5b75b88fd7c6681abcc7ff5b89

workflow graph scatter-valuefrom-wf1.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/scatter-valuefrom-wf1.cwl

Branch/Commit ID: b1d4a69df86350059bd49aa127c02be0c349f7de

workflow graph tt_hmmsearch_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode.cwl

Branch/Commit ID: a1851f7b930a08bb100e81329b24d0aaa7a644e8

workflow graph Detect Docm variants

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/docm_cle.cwl

Branch/Commit ID: 8da2b1cd6fa379b2c22baf9dad762d39630e6f46

workflow graph hmmsearch_wnode and gpx_qdump combined workflow to apply scatter/gather

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode_plus_qdump.cwl

Branch/Commit ID: a1851f7b930a08bb100e81329b24d0aaa7a644e8

workflow graph WGS and MT analysis for fastq files

rna / protein - qc, preprocess, filter, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/wgs-noscreen-fastq.workflow.cwl

Branch/Commit ID: f5839797da8209a9d3e441023f88130219751020