Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph trim-rnaseq-se-dutp.cwl

Runs RNA-Seq dUTP BioWardrobe basic analysis with strand specific single-end data file.

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: e284e3f6dff25037b209895c52f2abd37a1ce1bf

workflow graph protein similarities

run diamond on mutlple DBs and merge-sort results

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/protein-diamond.workflow.cwl

Branch/Commit ID: 3e967f035c10a176b9457331df0b3374a8562b26

workflow graph hmmsearch_wnode and gpx_qdump combined workflow to apply scatter/gather

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode_plus_qdump.cwl

Branch/Commit ID: 0788fbf0432567fd4fc131c6757904841ccd72ba

workflow graph bwa_index

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/subworkflows/bwa_index.cwl

Branch/Commit ID: cebfad2f456d672052ef8c83f5ff1b4f3b4368e4

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: 282762f8bbaea57dd488115745ef798e128bade1

workflow graph count-lines6-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines6-wf.cwl

Branch/Commit ID: 886a6ac41c685f20d39e352f9c657e59f3312265

workflow graph count-lines5-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines5-wf.cwl

Branch/Commit ID: f207d168f4e7eb4dd2279840d4062ba75d9c79c3

workflow graph gcaccess_from_list

https://github.com/ncbi/pgap.git

Path: task_types/tt_gcaccess_from_list.cwl

Branch/Commit ID: 0788fbf0432567fd4fc131c6757904841ccd72ba

workflow graph umi molecular alignment fastq workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/umi_molecular_alignment.cwl

Branch/Commit ID: 641bdeffd942f5121e19626a094c8633386ad546

workflow graph SoupX (workflow) - an R package for the estimation and removal of cell free mRNA contamination

Wrapped in a workflow SoupX tool for easy access to Cell Ranger pipeline compressed outputs.

https://github.com/datirium/workflows.git

Path: tools/soupx-subworkflow.cwl

Branch/Commit ID: 433c10a6ee9f9b07f1af4141e3df6a584dfe86a1